These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 22150028)
1. Raman spectroscopic investigation of the effects of cosmetic formulations on the constituents and properties of human skin. Tosato MG; Alves RS; Dos Santos EA; Raniero L; Menezes PF; Belletti KM; Praes CE; Martin AA Photomed Laser Surg; 2012 Feb; 30(2):85-91. PubMed ID: 22150028 [TBL] [Abstract][Full Text] [Related]
2. Noninvasive estimation of chronological and photoinduced skin damage using Raman spectroscopy and principal component analysis. González FJ; Castillo-Martínez C; Martínez-Escanamé M; Ramírez-Elías MG; Gaitan-Gaona FI; Oros-Ovalle C; Moncada B Skin Res Technol; 2012 Nov; 18(4):442-6. PubMed ID: 22103432 [TBL] [Abstract][Full Text] [Related]
3. In vivo confocal Raman spectroscopy for intrinsic aging and photoaging assessment. de Vasconcelos Nasser Caetano L; de Oliveira Mendes T; Bagatin E; Amante Miot H; Marques Soares JL; Simoes E Silva Enokihara MM; Abrahao Martin A J Dermatol Sci; 2017 Nov; 88(2):199-206. PubMed ID: 28855068 [TBL] [Abstract][Full Text] [Related]
4. Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics. Silveira FL; Pacheco MT; Bodanese B; Pasqualucci CA; Zângaro RA; Silveira L Lasers Surg Med; 2015 Jan; 47(1):6-16. PubMed ID: 25583686 [TBL] [Abstract][Full Text] [Related]
5. Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models. Bodanese B; Silveira L; Albertini R; Zângaro RA; Pacheco MT Photomed Laser Surg; 2010 Aug; 28 Suppl 1():S119-27. PubMed ID: 20649423 [TBL] [Abstract][Full Text] [Related]
6. Near-infrared Fourier transform Raman spectroscopic analysis of proteins, water and lipids in intact normal stratum corneum and psoriasis scales. Osada M; Gniadecka M; Wulf HC Exp Dermatol; 2004 Jun; 13(6):391-5. PubMed ID: 15186326 [TBL] [Abstract][Full Text] [Related]
7. In vivo confocal Raman spectroscopic imaging of the human skin extracellular matrix degradation due to accumulated intrinsic and extrinsic aging. Ali SM Photodermatol Photoimmunol Photomed; 2021 Mar; 37(2):140-152. PubMed ID: 33095927 [TBL] [Abstract][Full Text] [Related]
8. FT-Raman spectroscopic study of human skin subjected to uniaxial stress. Gąsior-Głogowska M; Komorowska M; Hanuza J; Mączka M; Zając A; Ptak M; Będziński R; Kobielarz M; Maksymowicz K; Kuropka P; Szotek S J Mech Behav Biomed Mater; 2013 Feb; 18():240-52. PubMed ID: 23290820 [TBL] [Abstract][Full Text] [Related]
9. Influence of different cosmetic formulations on the human skin barrier. Heinrich K; Heinrich U; Tronnier H Skin Pharmacol Physiol; 2014; 27(3):141-7. PubMed ID: 24434680 [TBL] [Abstract][Full Text] [Related]
10. Segregation of human prostate tissues classified high-risk (UK) versus low-risk (India) for adenocarcinoma using Fourier-transform infrared or Raman microspectroscopy coupled with discriminant analysis. Patel II; Trevisan J; Singh PB; Nicholson CM; Krishnan RK; Matanhelia SS; Martin FL Anal Bioanal Chem; 2011 Aug; 401(3):969-82. PubMed ID: 21643857 [TBL] [Abstract][Full Text] [Related]
12. Moisturizing effect of cosmetic formulations containing Aloe vera extract in different concentrations assessed by skin bioengineering techniques. Dal'Belo SE; Gaspar LR; Maia Campos PM Skin Res Technol; 2006 Nov; 12(4):241-6. PubMed ID: 17026654 [TBL] [Abstract][Full Text] [Related]
13. Topical activity of ascorbic acid: from in vitro optimization to in vivo efficacy. Raschke T; Koop U; Düsing HJ; Filbry A; Sauermann K; Jaspers S; Wenck H; Wittern KP Skin Pharmacol Physiol; 2004; 17(4):200-6. PubMed ID: 15258452 [TBL] [Abstract][Full Text] [Related]
14. Raman characterization of human skin aging. Villaret A; Ipinazar C; Satar T; Gravier E; Mias C; Questel E; Schmitt AM; Samouillan V; Nadal F; Josse G Skin Res Technol; 2019 May; 25(3):270-276. PubMed ID: 30402919 [TBL] [Abstract][Full Text] [Related]
15. A noninvasive method for assessing interior skin damage caused by chronological aging and photoaging based on near-infrared diffuse reflection spectroscopy. Miyamae Y; Yamakawa Y; Kawabata M; Ozaki Y Appl Spectrosc; 2008 Jun; 62(6):677-81. PubMed ID: 18559156 [TBL] [Abstract][Full Text] [Related]
16. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Crowther JM; Sieg A; Blenkiron P; Marcott C; Matts PJ; Kaczvinsky JR; Rawlings AV Br J Dermatol; 2008 Sep; 159(3):567-77. PubMed ID: 18616783 [TBL] [Abstract][Full Text] [Related]
17. An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream. Chrit L; Bastien P; Sockalingum GD; Batisse D; Leroy F; Manfait M; Hadjur C Skin Pharmacol Physiol; 2006; 19(4):207-15. PubMed ID: 16679823 [TBL] [Abstract][Full Text] [Related]
18. To study the effect of acute infrared radiation-induced alterations in human skin at cellular and molecular level using in vivo confocal Raman spectroscopy. Ali SM; Khalid SG Photodermatol Photoimmunol Photomed; 2022 Jan; 38(1):44-52. PubMed ID: 34157181 [TBL] [Abstract][Full Text] [Related]
19. Revealing covariance structures in fourier transform infrared and Raman microspectroscopy spectra: a study on pork muscle fiber tissue subjected to different processing parameters. Böcker U; Ofstad R; Wu Z; Bertram HC; Sockalingum GD; Manfait M; Egelandsdal B; Kohler A Appl Spectrosc; 2007 Oct; 61(10):1032-9. PubMed ID: 17958951 [TBL] [Abstract][Full Text] [Related]
20. Resonance Raman spectroscopy as an effective tool for the determination of antioxidative stability of cosmetic formulations. Darvin ME; Sterry W; Lademann J J Biophotonics; 2010 Jan; 3(1-2):82-8. PubMed ID: 19681037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]