These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22150348)

  • 1. Investigative studies into the recovery of DNA from improvised explosive device containers.
    Hoffmann SG; Stallworth SE; Foran DR
    J Forensic Sci; 2012 May; 57(3):602-9. PubMed ID: 22150348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of DNA from post-blast pipe bomb fragments for identification and determination of ancestry.
    Tasker E; LaRue B; Beherec C; Gangitano D; Hughes-Stamm S
    Forensic Sci Int Genet; 2017 May; 28():195-202. PubMed ID: 28292727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The recovery and analysis of mitochondrial DNA from exploded pipe bombs.
    Foran DR; Gehring ME; Stallworth SE
    J Forensic Sci; 2009 Jan; 54(1):90-4. PubMed ID: 19018941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved STR profiles from improvised explosive device (IED): fluorescence latent DNA detection and direct PCR.
    Tonkrongjun P; Phetpeng S; Asawutmangkul W; Sotthibandhu S; Kitpipit T; Thanakiatkrai P
    Forensic Sci Int Genet; 2019 Jul; 41():168-176. PubMed ID: 31153002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of DNA and fingermarks following deployment of render-safe tools for vehicle-borne improvised explosive devices (VBIED).
    Ramasamy S; Houspian A; Knott F
    Forensic Sci Int; 2011 Jul; 210(1-3):182-7. PubMed ID: 21482051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Successful STR amplification of post-blast IED samples by fluorescent visualisation and direct PCR.
    Martin B; Kanokwongnuwut P; Taylor D; Kirkbride KP; Armitt D; Linacre A
    Forensic Sci Int Genet; 2020 May; 46():102256. PubMed ID: 32028221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using STR analysis to detect human DNA from exploded pipe bomb devices.
    Esslinger KJ; Siegel JA; Spillane H; Stallworth S
    J Forensic Sci; 2004 May; 49(3):481-4. PubMed ID: 15171163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic study for DNA recovery and profiling from common IED substrates: From laboratory to casework.
    Phetpeng S; Kitpipit T; Thanakiatkrai P
    Forensic Sci Int Genet; 2015 Jul; 17():53-60. PubMed ID: 25828367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cyanoacrylate fuming, time after recovery, and location of biological material on the recovery and analysis of DNA from post-blast pipe bomb fragments*.
    Bille TW; Cromartie C; Farr M
    J Forensic Sci; 2009 Sep; 54(5):1059-67. PubMed ID: 19737244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low template STR typing: effect of replicate number and consensus method on genotyping reliability and DNA database search results.
    Benschop CC; van der Beek CP; Meiland HC; van Gorp AG; Westen AA; Sijen T
    Forensic Sci Int Genet; 2011 Aug; 5(4):316-28. PubMed ID: 20655289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collection and direct amplification methods using the GlobalFilerâ„¢ kit for DNA recovered from common pipe bomb substrates.
    Tasker E; Mayes C; LaRue B; Hughes-Stamm S
    Sci Justice; 2019 Sep; 59(5):580-584. PubMed ID: 31472804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing allele detection: Effects of analytical threshold and DNA levels on rates of allele and locus drop-out.
    Rakay CA; Bregu J; Grgicak CM
    Forensic Sci Int Genet; 2012 Dec; 6(6):723-8. PubMed ID: 22796031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental fragmentation of pipe bombs with varying case thickness.
    da Silva LA; Johnson S; Critchley R; Clements J; Norris K; Stennett C
    Forensic Sci Int; 2020 Jan; 306():110034. PubMed ID: 31835160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dandruff as a potential source of DNA in forensic casework.
    Lorente M; Entrala C; Lorente JA; Alvarez JC; Villanueva E; Budowle B
    J Forensic Sci; 1998 Jul; 43(4):901-2. PubMed ID: 9670516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the probability of allelic drop-out of STR alleles in forensic genetics.
    Tvedebrink T; Eriksen PS; Mogensen HS; Morling N
    Forensic Sci Int Genet; 2009 Sep; 3(4):222-6. PubMed ID: 19647706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The recovery of touch DNA from RDX-C4 evidences.
    Al-Snan NR
    Int J Legal Med; 2021 Mar; 135(2):393-397. PubMed ID: 32851472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of two methods for isolating DNA from human skeletal remains for STR analysis.
    Rucinski C; Malaver AL; Yunis EJ; Yunis JJ
    J Forensic Sci; 2012 May; 57(3):706-12. PubMed ID: 22212010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of human DNA profiles from poached deer remains: a feasibility study.
    Tobe SS; Govan J; Welch LA
    Sci Justice; 2011 Dec; 51(4):190-5. PubMed ID: 22137052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating STR profile from "Touch DNA".
    Aditya S; Bhattacharyya CN; Chaudhuri K
    J Forensic Leg Med; 2011 Oct; 18(7):295-8. PubMed ID: 21907930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [DNA genetyping of the trace bloodstains on the adsorbent object].
    Chen RH; Song Q; Xu QW; Dong Y
    Fa Yi Xue Za Zhi; 2007 Aug; 23(4):302-3. PubMed ID: 17896527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.