BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 22150672)

  • 1. Transport mechanisms of flavanone aglycones across Caco-2 cell monolayers and artificial PAMPA membranes.
    Kobayashi S; Nagai T; Konishi Y; Tanabe S; Morimoto K; Ogihara T
    J Pharm Pharmacol; 2012 Jan; 64(1):52-60. PubMed ID: 22150672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport evaluation of salicylic acid and structurally related compounds across Caco-2 cell monolayers and artificial PAMPA membranes.
    Koljonen M; Rousu K; Cierny J; Kaukonen AM; Hirvonen J
    Eur J Pharm Biopharm; 2008 Oct; 70(2):531-8. PubMed ID: 18582575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transepithelial transport of flavanone in intestinal Caco-2 cell monolayers.
    Kobayashi S; Konishi Y
    Biochem Biophys Res Commun; 2008 Mar; 368(1):23-9. PubMed ID: 18190788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones.
    Serra H; Mendes T; Bronze MR; Simplício AL
    Bioorg Med Chem; 2008 Apr; 16(7):4009-18. PubMed ID: 18249545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery.
    Kerns EH; Di L; Petusky S; Farris M; Ley R; Jupp P
    J Pharm Sci; 2004 Jun; 93(6):1440-53. PubMed ID: 15124203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The permeation of amphoteric drugs through artificial membranes--an in combo absorption model based on paracellular and transmembrane permeability.
    Tam KY; Avdeef A; Tsinman O; Sun N
    J Med Chem; 2010 Jan; 53(1):392-401. PubMed ID: 19947605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability.
    Akamatsu M; Fujikawa M; Nakao K; Shimizu R
    Chem Biodivers; 2009 Nov; 6(11):1845-66. PubMed ID: 19937826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates.
    Masungi C; Mensch J; Van Dijck A; Borremans C; Willems B; Mackie C; Noppe M; Brewster ME
    Pharmazie; 2008 Mar; 63(3):194-9. PubMed ID: 18444507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability.
    Fujikawa M; Ano R; Nakao K; Shimizu R; Akamatsu M
    Bioorg Med Chem; 2005 Aug; 13(15):4721-32. PubMed ID: 15936203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKa(flux) method.
    Avdeef A; Artursson P; Neuhoff S; Lazorova L; Gråsjö J; Tavelin S
    Eur J Pharm Sci; 2005 Mar; 24(4):333-49. PubMed ID: 15734300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum.
    Berginc K; Zakelj S; Levstik L; Ursic D; Kristl A
    Eur J Pharm Biopharm; 2007 May; 66(2):281-5. PubMed ID: 17129714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-Dependent passive and active transport of acidic drugs across Caco-2 cell monolayers.
    Neuhoff S; Ungell AL; Zamora I; Artursson P
    Eur J Pharm Sci; 2005 Jun; 25(2-3):211-20. PubMed ID: 15911216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR study on permeability of hydrophobic compounds with artificial membranes.
    Fujikawa M; Nakao K; Shimizu R; Akamatsu M
    Bioorg Med Chem; 2007 Jun; 15(11):3756-67. PubMed ID: 17418579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quercetin and naringenin transport across human intestinal Caco-2 cells.
    Nait Chabane M; Al Ahmad A; Peluso J; Muller CD; Ubeaud G
    J Pharm Pharmacol; 2009 Nov; 61(11):1473-83. PubMed ID: 19903372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of in vitro models for the prediction of compound absorption across the human intestinal mucosa.
    Miret S; Abrahamse L; de Groene EM
    J Biomol Screen; 2004 Oct; 9(7):598-606. PubMed ID: 15475479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the stereoselectivity of chiral drug transport across Caco-2 cell monolayers.
    He Y; Zeng S
    Chirality; 2006 Jan; 18(1):64-9. PubMed ID: 16287047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability.
    Mensch J; Melis A; Mackie C; Verreck G; Brewster ME; Augustijns P
    Eur J Pharm Biopharm; 2010 Mar; 74(3):495-502. PubMed ID: 20067834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeation prediction of M100240 using the parallel artificial membrane permeability assay.
    Hwang KK; Martin NE; Jiang L; Zhu C
    J Pharm Pharm Sci; 2003; 6(3):315-20. PubMed ID: 14738711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of the naringin low uptake by intestinal Caco-2 cells.
    Tourniaire F; Hassan M; André M; Ghiringhelli O; Alquier C; Amiot MJ
    Mol Nutr Food Res; 2005 Oct; 49(10):957-62. PubMed ID: 16189799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAMPA--a drug absorption in vitro model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones.
    Bermejo M; Avdeef A; Ruiz A; Nalda R; Ruell JA; Tsinman O; González I; Fernández C; Sánchez G; Garrigues TM; Merino V
    Eur J Pharm Sci; 2004 Mar; 21(4):429-41. PubMed ID: 14998573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.