These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 22151312)

  • 1. Thoracic spinal cord stimulation improves cardiac contractile function and myocardial oxygen consumption in a porcine model of ischemic heart failure.
    Liu Y; Yue WS; Liao SY; Zhang Y; Au KW; Shuto C; Hata C; Park E; Chen P; Siu CW; Tse HF
    J Cardiovasc Electrophysiol; 2012 May; 23(5):534-40. PubMed ID: 22151312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure.
    Liao SY; Liu Y; Zuo M; Zhang Y; Yue W; Au KW; Lai WH; Wu Y; Shuto C; Chen P; Siu CW; Schwartz PJ; Tse HF
    Europace; 2015 Dec; 17(12):1875-83. PubMed ID: 25767085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model.
    Issa ZF; Zhou X; Ujhelyi MR; Rosenberger J; Bhakta D; Groh WJ; Miller JM; Zipes DP
    Circulation; 2005 Jun; 111(24):3217-20. PubMed ID: 15956128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac contractility modulation with nonexcitatory electric signals improves left ventricular function in dogs with chronic heart failure.
    Morita H; Suzuki G; Haddad W; Mika Y; Tanhehco EJ; Sharov VG; Goldstein S; Ben-Haim S; Sabbah HN
    J Card Fail; 2003 Feb; 9(1):69-75. PubMed ID: 12612875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model.
    Lopshire JC; Zhou X; Dusa C; Ueyama T; Rosenberger J; Courtney N; Ujhelyi M; Mullen T; Das M; Zipes DP
    Circulation; 2009 Jul; 120(4):286-94. PubMed ID: 19597055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption.
    Butter C; Wellnhofer E; Schlegl M; Winbeck G; Fleck E; Sabbah HN
    J Card Fail; 2007 Mar; 13(2):137-42. PubMed ID: 17395055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between improvement in left ventricular dyssynchrony and contractile function and clinical outcome with cardiac resynchronization therapy: the MADIT-CRT trial.
    Pouleur AC; Knappe D; Shah AM; Uno H; Bourgoun M; Foster E; McNitt S; Hall WJ; Zareba W; Goldenberg I; Moss AJ; Pfeffer MA; Solomon SD;
    Eur Heart J; 2011 Jul; 32(14):1720-9. PubMed ID: 21609974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromodulation therapy does not influence blood flow distribution or left-ventricular dynamics during acute myocardial ischemia.
    Kingma JG; Linderoth B; Ardell JL; Armour JA; DeJongste MJ; Foreman RD
    Auton Neurosci; 2001 Aug; 91(1-2):47-54. PubMed ID: 11515801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of acute changes in left ventricular volume, systolic and diastolic functions, and intraventricular synchronicity after biventricular and right ventricular pacing for heart failure.
    Yu CM; Lin H; Fung WH; Zhang Q; Kong SL; Sanderson JE
    Am Heart J; 2003 May; 145(5):E18. PubMed ID: 12766742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular basis for improved left ventricular pump function after digoxin therapy in experimental left ventricular failure.
    McMahon WS; Holzgrefe HH; Walker JD; Mukherjee R; Arthur SR; Cavallo MJ; Child MJ; Spinale FG
    J Am Coll Cardiol; 1996 Aug; 28(2):495-505. PubMed ID: 8800131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure.
    Imai M; Rastogi S; Gupta RC; Mishra S; Sharov VG; Stanley WC; Mika Y; Rousso B; Burkhoff D; Ben-Haim S; Sabbah HN
    J Am Coll Cardiol; 2007 May; 49(21):2120-8. PubMed ID: 17531662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A metabolic protective strategy could improve long-term survival in patients with LV-dysfunction undergoing CABG.
    Svedjeholm R; Vidlund M; Vanhanen I; Håkanson E
    Scand Cardiovasc J; 2010 Feb; 44(1):45-58. PubMed ID: 20141344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological replacement of T3 improves left ventricular function in an animal model of myocardial infarction-induced congestive heart failure.
    Henderson KK; Danzi S; Paul JT; Leya G; Klein I; Samarel AM
    Circ Heart Fail; 2009 May; 2(3):243-52. PubMed ID: 19808346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocardial contractile reserve predicts improvement in left ventricular function after cardiac resynchronization therapy.
    Ypenburg C; Sieders A; Bleeker GB; Holman ER; van der Wall EE; Schalij MJ; Bax JJ
    Am Heart J; 2007 Dec; 154(6):1160-5. PubMed ID: 18035090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependency of cardiac resynchronization therapy on myocardial viability at the LV lead position.
    Becker M; Zwicker C; Kaminski M; Napp A; Altiok E; Ocklenburg C; Friedman Z; Adam D; Schauerte P; Marx N; Hoffmann R
    JACC Cardiovasc Imaging; 2011 Apr; 4(4):366-74. PubMed ID: 21492811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haemodynamic impact of the left ventricular pacing site during graded ischaemia in an open-chest pig model.
    Bordachar P; Labrousse L; Thambo JB; Reant P; Lafitte S; O'Neill MD; Jais P; Haissaguerre M; Clementy J; Dos Santos P
    Europace; 2008 Feb; 10(2):242-8. PubMed ID: 18256130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplanted human cord blood-derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction.
    Ghodsizad A; Niehaus M; Kögler G; Martin U; Wernet P; Bara C; Khaladj N; Loos A; Makoui M; Thiele J; Mengel M; Karck M; Klein HM; Haverich A; Ruhparwar A
    Heart; 2009 Jan; 95(1):27-35. PubMed ID: 18519547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of cardiac resynchronization therapy on left ventricular function, myocardial energetics, and metabolic reserve in patients with dilated cardiomyopathy and heart failure.
    Sundell J; Engblom E; Koistinen J; Ylitalo A; Naum A; Stolen KQ; Kalliokoski R; Nekolla SG; Airaksinen KE; Bax JJ; Knuuti J
    J Am Coll Cardiol; 2004 Mar; 43(6):1027-33. PubMed ID: 15028362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thoracic Spinal Cord Stimulation for Heart Failure as a Restorative Treatment (SCS HEART study): first-in-man experience.
    Tse HF; Turner S; Sanders P; Okuyama Y; Fujiu K; Cheung CW; Russo M; Green MDS; Yiu KH; Chen P; Shuto C; Lau EOY; Siu CW
    Heart Rhythm; 2015 Mar; 12(3):588-595. PubMed ID: 25500165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of triangle ventricular pacing on haemodynamics and dyssynchrony in patients with advanced heart failure: a comparison study with conventional bi-ventricular pacing therapy.
    Yoshida K; Seo Y; Yamasaki H; Tanoue K; Murakoshi N; Ishizu T; Sekiguchi Y; Kawano S; Otsuka S; Watanabe S; Yamaguchi I; Aonuma K
    Eur Heart J; 2007 Nov; 28(21):2610-9. PubMed ID: 17947217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.