These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22151604)

  • 1. SNPInterForest: a new method for detecting epistatic interactions.
    Yoshida M; Koike A
    BMC Bioinformatics; 2011 Dec; 12():469. PubMed ID: 22151604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses.
    Wongseree W; Assawamakin A; Piroonratana T; Sinsomros S; Limwongse C; Chaiyaratana N
    BMC Bioinformatics; 2009 Sep; 10():294. PubMed ID: 19761607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    BMC Bioinformatics; 2009 Jan; 10():13. PubMed ID: 19134182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies.
    Wan X; Yang C; Yang Q; Xue H; Fan X; Tang NL; Yu W
    Am J Hum Genet; 2010 Sep; 87(3):325-40. PubMed ID: 20817139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
    Guo X; Meng Y; Yu N; Pan Y
    BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Markov blanket-based method for detecting causal SNPs in GWAS.
    Han B; Park M; Chen XW
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S5. PubMed ID: 20438652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A random forest approach to the detection of epistatic interactions in case-control studies.
    Jiang R; Tang W; Wu X; Fu W
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S65. PubMed ID: 19208169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis.
    Briggs FB; Ramsay PP; Madden E; Norris JM; Holers VM; Mikuls TR; Sokka T; Seldin MF; Gregersen PK; Criswell LA; Barcellos LF
    Genes Immun; 2010 Apr; 11(3):199-208. PubMed ID: 20090771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure.
    Leem S; Jeong HH; Lee J; Wee K; Sohn KA
    Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning genetic epistasis using Bayesian network scoring criteria.
    Jiang X; Neapolitan RE; Barmada MM; Visweswaran S
    BMC Bioinformatics; 2011 Mar; 12():89. PubMed ID: 21453508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing Deep Learning and Genome Wide Association Studies for Epistatic-Driven Preterm Birth Classification in African-American Women.
    Fergus P; Montanez CC; Abdulaimma B; Lisboa P; Chalmers C; Pineles B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):668-678. PubMed ID: 30183645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks.
    Han B; Chen XW; Talebizadeh Z; Xu H
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S14. PubMed ID: 23281790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies.
    Setsirichok D; Tienboon P; Jaroonruang N; Kittichaijaroen S; Wongseree W; Piroonratana T; Usavanarong T; Limwongse C; Aporntewan C; Phadoongsidhi M; Chaiyaratana N
    Springerplus; 2013; 2():230. PubMed ID: 24804170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ant colony optimization with an automatic adjustment mechanism for detecting epistatic interactions.
    Guan B; Zhao Y; Sun W
    Comput Biol Chem; 2018 Dec; 77():354-362. PubMed ID: 30466044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EpiMC: Detecting Epistatic Interactions Using Multiple Clusterings.
    Wang J; Zhang H; Ren W; Guo M; Yu G
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):243-254. PubMed ID: 33989157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SEEI: spherical evolution with feedback mechanism for identifying epistatic interactions.
    Tang DY; Mao YJ; Zhao J; Yang J; Li SY; Ren FX; Zheng J
    BMC Genomics; 2024 May; 25(1):462. PubMed ID: 38735952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting epistatic effects in association studies at a genomic level based on an ensemble approach.
    Li J; Horstman B; Chen Y
    Bioinformatics; 2011 Jul; 27(13):i222-9. PubMed ID: 21685074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.