These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22151715)

  • 1. Efficient algorithms for reconstructing gene content by co-evolution.
    Birin H; Tuller T
    BMC Bioinformatics; 2011 Oct; 12 Suppl 9(Suppl 9):S12. PubMed ID: 22151715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing ancestral genomic sequences by co-evolution: formal definitions, computational issues, and biological examples.
    Tuller T; Birin H; Kupiec M; Ruppin E
    J Comput Biol; 2010 Sep; 17(9):1327-44. PubMed ID: 20874411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing ancestral gene content by coevolution.
    Tuller T; Birin H; Gophna U; Kupiec M; Ruppin E
    Genome Res; 2010 Jan; 20(1):122-32. PubMed ID: 19948819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SCJ Small Parsimony Problem for Weighted Gene Adjacencies.
    Luhmann N; Lafond M; Thevenin A; Ouangraoua A; Wittler R; Chauve C
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1364-1373. PubMed ID: 28166504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast ancestral gene order reconstruction of genomes with unequal gene content.
    Feijão P; Araujo E
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):413. PubMed ID: 28185578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of ancestral gene orders using intermediate genomes.
    Feijão P
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S3. PubMed ID: 26451811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.
    Lyubetsky V; Gershgorin R; Gorbunov K
    BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unified ILP framework for core ancestral genome reconstruction problems.
    Avdeyev P; Alexeev N; Rong Y; Alekseyev MA
    Bioinformatics; 2020 May; 36(10):2993-3003. PubMed ID: 32058559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes.
    Nakatani Y; McLysaght A
    Bioinformatics; 2017 Jul; 33(14):i369-i378. PubMed ID: 28881993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the inference of parsimonious indel evolutionary scenarios.
    Chindelevitch L; Li Z; Blais E; Blanchette M
    J Bioinform Comput Biol; 2006 Jun; 4(3):721-44. PubMed ID: 16960972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing ancestral gene orders with duplications guided by synteny level genome reconstruction.
    Rajaraman A; Ma J
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):414. PubMed ID: 28185565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome rearrangements with duplications.
    Bader M
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S27. PubMed ID: 20122199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
    Mirkin BG; Fenner TI; Galperin MY; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():2. PubMed ID: 12515582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of ancestral genomic sequences using likelihood.
    Elias I; Tuller T
    J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heuristics for the inversion median problem.
    Rajan V; Xu AW; Lin Y; Swenson KM; Moret BM
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S30. PubMed ID: 20122203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral gene transfer, rearrangement, reconciliation.
    Patterson M; Szöllősi G; Daubin V; Tannier E
    BMC Bioinformatics; 2013; 14 Suppl 15(Suppl 15):S4. PubMed ID: 24564205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing genomes with rearrangements and segmental duplications.
    Shao M; Moret BM
    Bioinformatics; 2015 Jun; 31(12):i329-38. PubMed ID: 26072500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the reconstruction of the ancestral bacterial genomes in genus Mycobacterium and Brucella.
    Guyeux C; Al-Nuaimi B; AlKindy B; Couchot JF; Salomon M
    BMC Syst Biol; 2018 Nov; 12(Suppl 5):100. PubMed ID: 30458842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering local patterns of co-evolution: computational aspects and biological examples.
    Tuller T; Felder Y; Kupiec M
    BMC Bioinformatics; 2010 Jan; 11():43. PubMed ID: 20096103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cooperative Co-Evolutionary Genetic Algorithm for Tree Scoring and Ancestral Genome Inference.
    Gao N; Zhang Y; Feng B; Tang J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1248-54. PubMed ID: 26671797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.