These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 22151971)
1. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris. Sygmund C; Staudigl P; Klausberger M; Pinotsis N; Djinović-Carugo K; Gorton L; Haltrich D; Ludwig R Microb Cell Fact; 2011 Dec; 10():106. PubMed ID: 22151971 [TBL] [Abstract][Full Text] [Related]
2. Efficient expression, purification, and characterization of a novel FAD-dependent glucose dehydrogenase from Aspergillus terreus in Pichia pastoris. Yang Y; Huang L; Wang J; Wang X; Xu Z J Microbiol Biotechnol; 2014 Nov; 24(11):1516-24. PubMed ID: 25022525 [TBL] [Abstract][Full Text] [Related]
3. Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella cingulata suggests a role in plant pathogenicity. Sygmund C; Klausberger M; Felice AK; Ludwig R Microbiology (Reading); 2011 Nov; 157(Pt 11):3203-3212. PubMed ID: 21903757 [TBL] [Abstract][Full Text] [Related]
4. Orientated Immobilization of FAD-Dependent Glucose Dehydrogenase on Electrode by Carbohydrate-Binding Module Fusion for Efficient Glucose Assay. Han Q; Gong W; Zhang Z; Wang L; Wang B; Cai L; Meng Q; Li Y; Liu Q; Yang Y; Zheng L; Ma Y Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073858 [TBL] [Abstract][Full Text] [Related]
5. A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme. Piumi F; Levasseur A; Navarro D; Zhou S; Mathieu Y; Ropartz D; Ludwig R; Faulds CB; Record E Appl Microbiol Biotechnol; 2014 Dec; 98(24):10105-18. PubMed ID: 24965558 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of thermostable glucose dehydrogenases from thermophilic filamentous fungi. Ozawa K; Iwasa H; Sasaki N; Kinoshita N; Hiratsuka A; Yokoyama K Appl Microbiol Biotechnol; 2017 Jan; 101(1):173-183. PubMed ID: 27510979 [TBL] [Abstract][Full Text] [Related]
7. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b Yanase T; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Sode K Biochem Biophys Res Commun; 2020 Sep; 530(1):82-86. PubMed ID: 32828319 [TBL] [Abstract][Full Text] [Related]
9. Expression, characterization and mutagenesis of an FAD-dependent glucose dehydrogenase from Aspergillus terreus. Yang Y; Huang L; Wang J; Xu Z Enzyme Microb Technol; 2015 Jan; 68():43-9. PubMed ID: 25435504 [TBL] [Abstract][Full Text] [Related]
10. High level expression of Glomerella cingulata cutinase in dense cultures of Pichia pastoris grown under fed-batch conditions. Seman WM; Bakar SA; Bukhari NA; Gaspar SM; Othman R; Nathan S; Mahadi NM; Jahim J; Murad AM; Bakar FD J Biotechnol; 2014 Aug; 184():219-28. PubMed ID: 24910973 [TBL] [Abstract][Full Text] [Related]
11. Crystallographic analysis of FAD-dependent glucose dehydrogenase. Komori H; Inaka K; Furubayashi N; Honda M; Higuchi Y Acta Crystallogr F Struct Biol Commun; 2015 Aug; 71(Pt 8):1017-9. PubMed ID: 26249692 [TBL] [Abstract][Full Text] [Related]
12. Heterologous production of fungal effectors in Pichia pastoris. Kombrink A Methods Mol Biol; 2012; 835():209-17. PubMed ID: 22183656 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond. Sakai G; Kojima K; Mori K; Oonishi Y; Sode K Biotechnol Lett; 2015 May; 37(5):1091-9. PubMed ID: 25650345 [TBL] [Abstract][Full Text] [Related]
14. Heterologous expression and biochemical characterization of a novel thermostable Sclerotinia sclerotiorum GH45 endoglucanase in Pichia pastoris. Chahed H; Boumaiza M; Ezzine A; Marzouki MN Int J Biol Macromol; 2018 Jan; 106():629-635. PubMed ID: 28811204 [TBL] [Abstract][Full Text] [Related]
15. Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells. Zafar MN; Beden N; Leech D; Sygmund C; Ludwig R; Gorton L Anal Bioanal Chem; 2012 Feb; 402(6):2069-77. PubMed ID: 22222911 [TBL] [Abstract][Full Text] [Related]
16. Comparison of cerato-platanin family protein BcSpl1 produced in Pichia pastoris and Escherichia coli. Zhang Y; Liang Y; Qiu D; Yuan J; Yang X Protein Expr Purif; 2017 Aug; 136():20-26. PubMed ID: 28606662 [TBL] [Abstract][Full Text] [Related]
17. Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Hyun J; Abigail M; Choo JW; Ryu J; Kim HK J Microbiol Biotechnol; 2016 Oct; 26(10):1708-1716. PubMed ID: 27363470 [TBL] [Abstract][Full Text] [Related]
18. Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide. Lee H; Lee YS; Reginald SS; Baek S; Lee EM; Choi IG; Chang IS Biosens Bioelectron; 2020 Oct; 165():112427. PubMed ID: 32729543 [TBL] [Abstract][Full Text] [Related]
19. Effects of Cross-linker Chemistry on Bioelectrocatalytic Reactions in a Redox Cross-linked Network of Glucose Dehydrogenase and Thionine. Hossain MM; Rezki M; Shalayel I; Zebda A; Tsujimura S ACS Appl Mater Interfaces; 2024 Aug; 16(33):44004-44017. PubMed ID: 39132979 [TBL] [Abstract][Full Text] [Related]
20. Co-expression of the recombined alcohol dehydrogenase and glucose dehydrogenase and cross-linked enzyme aggregates stabilization. Hu X; Liu L; Chen D; Wang Y; Zhang J; Shao L Bioresour Technol; 2017 Jan; 224():531-535. PubMed ID: 27838320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]