These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 22152005)
1. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer. Ukkonen K; Vasala A; Ojamo H; Neubauer P Microb Cell Fact; 2011 Dec; 10():107. PubMed ID: 22152005 [TBL] [Abstract][Full Text] [Related]
2. High Yield of Recombinant Protein in Shaken E. coli Cultures with Enzymatic Glucose Release Medium EnPresso B. Ukkonen K; Neubauer A; Pereira VJ; Vasala A Methods Mol Biol; 2017; 1586():127-137. PubMed ID: 28470602 [TBL] [Abstract][Full Text] [Related]
3. A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Krause M; Ukkonen K; Haataja T; Ruottinen M; Glumoff T; Neubauer A; Neubauer P; Vasala A Microb Cell Fact; 2010 Feb; 9():11. PubMed ID: 20167131 [TBL] [Abstract][Full Text] [Related]
4. Growth and recombinant protein expression with Escherichia coli in different batch cultivation media. Hortsch R; Weuster-Botz D Appl Microbiol Biotechnol; 2011 Apr; 90(1):69-76. PubMed ID: 21181153 [TBL] [Abstract][Full Text] [Related]
5. Use of slow glucose feeding as supporting carbon source in lactose autoinduction medium improves the robustness of protein expression at different aeration conditions. Ukkonen K; Mayer S; Vasala A; Neubauer P Protein Expr Purif; 2013 Oct; 91(2):147-54. PubMed ID: 23938950 [TBL] [Abstract][Full Text] [Related]
6. Effect of culture medium, host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. coli cultures. Ukkonen K; Veijola J; Vasala A; Neubauer P Microb Cell Fact; 2013 Jul; 12():73. PubMed ID: 23895637 [TBL] [Abstract][Full Text] [Related]
7. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Glazyrina J; Materne EM; Dreher T; Storm D; Junne S; Adams T; Greller G; Neubauer P Microb Cell Fact; 2010 May; 9():42. PubMed ID: 20509968 [TBL] [Abstract][Full Text] [Related]
8. The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli. Krause M; Neubauer A; Neubauer P Microb Cell Fact; 2016 Jun; 15(1):110. PubMed ID: 27317421 [TBL] [Abstract][Full Text] [Related]
9. Production of a recombinant phospholipase A2 in Escherichia coli using resonant acoustic mixing that improves oxygen transfer in shake flasks. Valdez-Cruz NA; Reynoso-Cereceda GI; Pérez-Rodriguez S; Restrepo-Pineda S; González-Santana J; Olvera A; Zavala G; Alagón A; Trujillo-Roldán MA Microb Cell Fact; 2017 Jul; 16(1):129. PubMed ID: 28743267 [TBL] [Abstract][Full Text] [Related]
10. High level extracellular production of recombinant γ-glutamyl transpeptidase from Bacillus licheniformis in Escherichia coli fed-batch culture. Bindal S; Dagar VK; Saini M; Khasa YP; Gupta R Enzyme Microb Technol; 2018 Sep; 116():23-32. PubMed ID: 29887013 [TBL] [Abstract][Full Text] [Related]
11. High yield production of the latex clearing protein from Gordonia polyisoprenivorans VH2 in fed batch fermentations using a recombinant strain of Escherichia coli. Altenhoff AL; Thierbach S; Steinbüchel A J Biotechnol; 2020 Feb; 309():92-99. PubMed ID: 31881242 [TBL] [Abstract][Full Text] [Related]
12. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations. Li J; Jaitzig J; Lu P; Süssmuth RD; Neubauer P Microb Cell Fact; 2015 Jun; 14():83. PubMed ID: 26063334 [TBL] [Abstract][Full Text] [Related]
13. Reinventing shake flask fermentation: The breathable flask. Kumar V; Tolosa M; Ge X; Rao G Biotechnol Bioeng; 2024 Sep; 121(9):2706-2715. PubMed ID: 38698719 [TBL] [Abstract][Full Text] [Related]
14. Increased bacterial cell density and recombinant protein yield using a commercial microbial cultivation system. Peck GR; Bowden TR; Shiell BJ; Michalski WP Prep Biochem Biotechnol; 2014; 44(3):217-30. PubMed ID: 24274011 [TBL] [Abstract][Full Text] [Related]
15. Development of scale-down techniques for investigation of recombinant Escherichia coli fermentations: acid metabolites in shake flasks and stirred bioreactors. Dahlgren ME; Powell AL; Greasham RL; George HA Biotechnol Prog; 1993; 9(6):580-6. PubMed ID: 7764346 [TBL] [Abstract][Full Text] [Related]
16. Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask. Philip P; Kern D; Goldmanns J; Seiler F; Schulte A; Habicher T; Büchs J Microb Cell Fact; 2018 May; 17(1):69. PubMed ID: 29743073 [TBL] [Abstract][Full Text] [Related]
17. Glucose-limited high cell density cultivations from small to pilot plant scale using an enzyme-controlled glucose delivery system. Glazyrina J; Krause M; Junne S; Glauche F; Storm D; Neubauer P N Biotechnol; 2012 Jan; 29(2):235-42. PubMed ID: 22100433 [TBL] [Abstract][Full Text] [Related]
18. A cell engineering approach to enzyme-based fed-batch fermentation. Sibley M; Ward JM Microb Cell Fact; 2021 Jul; 20(1):146. PubMed ID: 34303374 [TBL] [Abstract][Full Text] [Related]
19. Systematic evaluation of characteristics of the membrane-based fed-batch shake flask. Philip P; Meier K; Kern D; Goldmanns J; Stockmeier F; Bähr C; Büchs J Microb Cell Fact; 2017 Jul; 16(1):122. PubMed ID: 28716035 [TBL] [Abstract][Full Text] [Related]