These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22152364)

  • 1. NMR studies of protein structure and dynamics. 2005.
    Kay LE
    J Magn Reson; 2011 Dec; 213(2):477-91. PubMed ID: 22152364
    [No Abstract]   [Full Text] [Related]  

  • 2. Experimental approaches for NMR studies of side-chain dynamics in high-molecular-weight proteins.
    Sheppard D; Sprangers R; Tugarinov V
    Prog Nucl Magn Reson Spectrosc; 2010 Jan; 56(1):1-45. PubMed ID: 20633347
    [No Abstract]   [Full Text] [Related]  

  • 3. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme.
    Korzhnev DM; Kloiber K; Kanelis V; Tugarinov V; Kay LE
    J Am Chem Soc; 2004 Mar; 126(12):3964-73. PubMed ID: 15038751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR studies of protein structure and dynamics.
    Kay LE
    J Magn Reson; 2005 Apr; 173(2):193-207. PubMed ID: 15780912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme.
    Tugarinov V; Ollerenshaw JE; Kay LE
    J Am Chem Soc; 2005 Jun; 127(22):8214-25. PubMed ID: 15926851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alanine methyl groups as NMR probes of molecular structure and dynamics in high-molecular-weight proteins.
    Godoy-Ruiz R; Guo C; Tugarinov V
    J Am Chem Soc; 2010 Dec; 132(51):18340-50. PubMed ID: 21138300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins.
    Tugarinov V; Hwang PM; Kay LE
    Annu Rev Biochem; 2004; 73():107-46. PubMed ID: 15189138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An account of NMR in structural biology.
    Wagner G
    Nat Struct Biol; 1997 Oct; 4 Suppl():841-4. PubMed ID: 9377155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry, energetics, and dynamics of hydrogen bonds in proteins: structural information derived from NMR scalar couplings.
    Gsponer J; Hopearuoho H; Cavalli A; Dobson CM; Vendruscolo M
    J Am Chem Soc; 2006 Nov; 128(47):15127-35. PubMed ID: 17117864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of protein structures in the solid state from NMR chemical shifts.
    Robustelli P; Cavalli A; Vendruscolo M
    Structure; 2008 Dec; 16(12):1764-9. PubMed ID: 19081052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A comparison of X-ray diffraction analysis and nuclear magnetic resonance from the data on the identification of alpha-helices and beta-strands in the same proteins].
    Shestopalov BV
    Biofizika; 2005; 50(6):998-1001. PubMed ID: 16358777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR as a tool to identify and characterize protein folding intermediates.
    Neira JL
    Arch Biochem Biophys; 2013 Mar; 531(1-2):90-9. PubMed ID: 22982558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural biology. Learning to speak the language of proteins.
    Jones DT
    Science; 2003 Nov; 302(5649):1347-8. PubMed ID: 14631028
    [No Abstract]   [Full Text] [Related]  

  • 14. Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes.
    Tugarinov V; Hwang PM; Ollerenshaw JE; Kay LE
    J Am Chem Soc; 2003 Aug; 125(34):10420-8. PubMed ID: 12926967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase g.
    Tugarinov V; Muhandiram R; Ayed A; Kay LE
    J Am Chem Soc; 2002 Aug; 124(34):10025-35. PubMed ID: 12188667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution NMR-derived global fold of a monomeric 82-kDa enzyme.
    Tugarinov V; Choy WY; Orekhov VY; Kay LE
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):622-7. PubMed ID: 15637152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4D 1H-13C NMR spectroscopy for assignments of alanine methyls in large and complex protein structures.
    Sheppard D; Guo C; Tugarinov V
    J Am Chem Soc; 2009 Feb; 131(4):1364-5. PubMed ID: 19132837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins.
    Robustelli P; Kohlhoff K; Cavalli A; Vendruscolo M
    Structure; 2010 Aug; 18(8):923-33. PubMed ID: 20696393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative 13C and 2H NMR relaxation studies of the 723-residue enzyme malate synthase G reveal a dynamic binding interface.
    Tugarinov V; Kay LE
    Biochemistry; 2005 Dec; 44(49):15970-7. PubMed ID: 16331956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.