These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22152794)
1. A simple and an efficient strategy to synthesize multi-component nanocomposites for biosensor applications. Lu X; Li Y; Zhang X; Du J; Zhou X; Xue Z; Liu X Anal Chim Acta; 2012 Jan; 711():40-5. PubMed ID: 22152794 [TBL] [Abstract][Full Text] [Related]
2. Biocompatibility of CS-PPy nanocomposites and their application to glucose biosensor. Fang Y; Ni Y; Zhang G; Mao C; Huang X; Shen J Bioelectrochemistry; 2012 Dec; 88():1-7. PubMed ID: 22750413 [TBL] [Abstract][Full Text] [Related]
3. Reactive template synthesis of polypyrrole nanotubes for fabricating metal/conducting polymer nanocomposites. Zhang J; Liu X; Zhang L; Cao B; Wu S Macromol Rapid Commun; 2013 Mar; 34(6):528-32. PubMed ID: 23341240 [TBL] [Abstract][Full Text] [Related]
4. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing. Wang L; Ye Y; Zhu H; Song Y; He S; Xu F; Hou H Nanotechnology; 2012 Nov; 23(45):455502. PubMed ID: 23090569 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for Suzuki coupling reaction in aqueous media. Fujii S; Matsuzawa S; Nakamura Y; Ohtaka A; Teratani T; Akamatsu K; Tsuruoka T; Nawafune H Langmuir; 2010 May; 26(9):6230-9. PubMed ID: 20146495 [TBL] [Abstract][Full Text] [Related]
6. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. Cao L; Liu Y; Zhang B; Lu L ACS Appl Mater Interfaces; 2010 Aug; 2(8):2339-46. PubMed ID: 20735106 [TBL] [Abstract][Full Text] [Related]
8. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Li J; Lin X Biosens Bioelectron; 2007 Jun; 22(12):2898-905. PubMed ID: 17215117 [TBL] [Abstract][Full Text] [Related]
9. Controllable anchoring of gold nanoparticles to polypyrrole nanofibers by hydrogen bonding and their application in nonenzymatic glucose sensors. Li C; Su Y; Lv X; Xia H; Shi H; Yang X; Zhang J; Wang Y Biosens Bioelectron; 2012; 38(1):402-6. PubMed ID: 22727516 [TBL] [Abstract][Full Text] [Related]
10. Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites. Njagi J; Andreescu S Biosens Bioelectron; 2007 Sep; 23(2):168-75. PubMed ID: 17512188 [TBL] [Abstract][Full Text] [Related]
11. In situ synthesis and characterization of multi-walled carbon nanotube/Prussian blue nanocomposite materials and application. Qiu JD; Xiong M; Liang RP; Zhang J; Xia XH J Nanosci Nanotechnol; 2008 Sep; 8(9):4453-60. PubMed ID: 19049040 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection. Yang L; Wang J; Lü H; Hui N Mikrochim Acta; 2021 Jan; 188(1):25. PubMed ID: 33404773 [TBL] [Abstract][Full Text] [Related]
13. Sensitive human interleukin 5 impedimetric sensor based on polypyrrole-pyrrolepropylic acid-gold nanocomposite. Chen W; Lu Z; Li CM Anal Chem; 2008 Nov; 80(22):8485-92. PubMed ID: 18947194 [TBL] [Abstract][Full Text] [Related]
14. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Zhao H; Ji X; Wang B; Wang N; Li X; Ni R; Ren J Biosens Bioelectron; 2015 Mar; 65():23-30. PubMed ID: 25461134 [TBL] [Abstract][Full Text] [Related]
15. Gold-coated silica-fiber hybrid materials for application in a novel hydrogen peroxide biosensor. Shen J; Yang X; Zhu Y; Kang H; Cao H; Li C Biosens Bioelectron; 2012 Apr; 34(1):132-6. PubMed ID: 22341862 [TBL] [Abstract][Full Text] [Related]
16. An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites. Shi W; Liu C; Song Y; Lin N; Zhou S; Cai X Biosens Bioelectron; 2012; 38(1):100-6. PubMed ID: 22651968 [TBL] [Abstract][Full Text] [Related]
17. An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Korkut S; Keskinler B; Erhan E Talanta; 2008 Sep; 76(5):1147-52. PubMed ID: 18761169 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of a novel impedance cell sensor based on the polystyrene/polyaniline/Au nanocomposite. Gu M; Zhang J; Li Y; Jiang L; Zhu JJ Talanta; 2009 Nov; 80(1):246-9. PubMed ID: 19782222 [TBL] [Abstract][Full Text] [Related]
19. A novel glucose sensor based on ordered mesoporous carbon-Au nanoparticles nanocomposites. Wang L; Bai J; Bo X; Zhang X; Guo L Talanta; 2011 Feb; 83(5):1386-91. PubMed ID: 21238726 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of ternary CNT/PPy/KxMnO2 composite nanowires for electrocatalytic applications. Zheng T; Lu X; Bian X; Zhang C; Xue Y; Jia X; Wang C Talanta; 2012 Feb; 90():51-6. PubMed ID: 22340115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]