BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 22153486)

  • 1. Reduction of Cr(VI) by malic acid in aqueous Fe-rich soil suspensions.
    Zhong L; Yang J
    Chemosphere; 2012 Mar; 86(10):973-8. PubMed ID: 22153486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site.
    Ding W; Stewart DI; Humphreys PN; Rout SP; Burke IT
    Sci Total Environ; 2016 Jan; 541():1191-1199. PubMed ID: 26476060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.
    Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X
    Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil.
    Pei G; Zhu Y; Wen J; Pei Y; Li H
    Environ Pollut; 2020 Jan; 256():113407. PubMed ID: 31672374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.
    Sarkar B; Naidu R; Krishnamurti GS; Megharaj M
    Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron.
    Rivero-Huguet M; Marshall WD
    Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles.
    Wang T; Qian T; Huo L; Li Y; Zhao D
    Environ Pollut; 2019 Dec; 255(Pt 1):112992. PubMed ID: 31541830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of hexavalent chromium in contaminated soil by Fe(II)-Al layered double hydroxide.
    He X; Zhong P; Qiu X
    Chemosphere; 2018 Nov; 210():1157-1166. PubMed ID: 30208541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation.
    Wang D; Li G; Qin S; Tao W; Gong S; Wang J
    Ecotoxicol Environ Saf; 2021 Jan; 208():111734. PubMed ID: 33396063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of Cr(VI)-Contaminated Soil Using the Acidified Hydrazine Hydrate.
    Ma Y; Li F; Jiang Y; Yang W; Lv L; Xue H; Wang Y
    Bull Environ Contam Toxicol; 2016 Sep; 97(3):392-4. PubMed ID: 27351195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of soil pH and organic carbon content on in vitro Cr bioaccessibility in Ultisol, Alfisol, and Inceptisol.
    Shi YX; Cui JQ; Zhang F; Li KW; Jiang J; Xu RK
    Chemosphere; 2023 Sep; 336():139274. PubMed ID: 37343637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Reductants on Phytoextraction of Chromium (VI) by Ipomoea aquatica.
    Ton SS; Lee MW; Yang YH; Hoi SK; Cheng WC; Wang KS; Chang HH; Chang SH
    Int J Phytoremediation; 2015; 17(1-6):429-36. PubMed ID: 25495933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reduction Kinetics of Cr (VI) in Chromium Contaminated Soil by Nanoscale Zerovalent Iron-copper Bimetallic].
    Ma SY; Zhu F; Shang ZF
    Huan Jing Ke Xue; 2016 May; 37(5):1953-9. PubMed ID: 27506053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Remediation of chromium (VI) contaminated soils using permeable reactive composite electrodes technology].
    Fu RB; Liu F; Ma J; Zhang CB; He GF
    Huan Jing Ke Xue; 2012 Jan; 33(1):280-5. PubMed ID: 22452223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergism of citric acid and zero-valent iron on Cr(VI) removal from real contaminated soil by electrokinetic remediation.
    Zheng Y; Yan Y; Yu L; Li H; Jiao B; Shiau Y; Li D
    Environ Sci Pollut Res Int; 2020 Feb; 27(5):5572-5583. PubMed ID: 31853846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones.
    Brose DA; James BR
    Environ Sci Technol; 2010 Dec; 44(24):9438-44. PubMed ID: 21105643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanochemical treatment of Cr(VI) contaminated soil using a sodium sulfide coupled solidification/stabilization process.
    Yuan W; Xu W; Wu Z; Zhang Z; Wang L; Bai J; Wang X; Zhang Q; Zhu X; Zhang C; Wang J
    Chemosphere; 2018 Dec; 212():540-547. PubMed ID: 30165280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of multi-wall carbon nanotubes on Cr(VI) reduction by citric acid: Implications for their use in soil remediation.
    Zhang Y; Yang J; Zhong L; Liu L
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):23791-23798. PubMed ID: 29876853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexavalent chromium reduction by Pannonibacter phragmitetus BB isolated from soil under chromium-containing slag heap.
    Chai LY; Huang SH; Yang ZH; Peng B; Huang Y; Chen YH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):615-22. PubMed ID: 19337925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.