These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22153506)

  • 21. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.
    Ollikainen N; de Jong RM; Kortemme T
    PLoS Comput Biol; 2015; 11(9):e1004335. PubMed ID: 26397464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully Blind Docking at the Atomic Level for Protein-Peptide Complex Structure Prediction.
    Yan C; Xu X; Zou X
    Structure; 2016 Oct; 24(10):1842-1853. PubMed ID: 27642160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the challenges of protein flexibility in drug design.
    Antunes DA; Devaurs D; Kavraki LE
    Expert Opin Drug Discov; 2015 Dec; 10(12):1301-13. PubMed ID: 26414598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes.
    Weng G; Wang E; Chen F; Sun H; Wang Z; Hou T
    Phys Chem Chem Phys; 2019 May; 21(19):10135-10145. PubMed ID: 31062799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site.
    Kurcinski M; Jamroz M; Blaszczyk M; Kolinski A; Kmiecik S
    Nucleic Acids Res; 2015 Jul; 43(W1):W419-24. PubMed ID: 25943545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Context contribution to the intermolecular recognition of human ACE2-derived peptides by SARS-CoV-2 spike protein: implications for improving the peptide affinity but not altering the peptide specificity by optimizing indirect readout.
    Zhou P; Wang H; Chen Z; Liu Q
    Mol Omics; 2021 Feb; 17(1):86-94. PubMed ID: 33174576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein flexibility and ligand recognition: challenges for molecular modeling.
    Spyrakis F; BidonChanal A; Barril X; Luque FJ
    Curr Top Med Chem; 2011; 11(2):192-210. PubMed ID: 20939788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure Determination of Challenging Protein-Peptide Complexes Combining NMR Chemical Shift Data and Molecular Dynamics Simulations.
    Mondal A; Swapna GVT; Lopez MM; Klang L; Hao J; Ma L; Roth MJ; Montelione GT; Perez A
    J Chem Inf Model; 2023 Apr; 63(7):2058-2072. PubMed ID: 36988562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced sampling of peptide and protein conformations using replica exchange simulations with a peptide backbone biasing-potential.
    Kannan S; Zacharias M
    Proteins; 2007 Feb; 66(3):697-706. PubMed ID: 17120231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of torsion angle molecular dynamics for efficient sampling of protein conformations.
    Chen J; Im W; Brooks CL
    J Comput Chem; 2005 Nov; 26(15):1565-78. PubMed ID: 16145655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometry-based sampling of conformational transitions in proteins.
    Seeliger D; Haas J; de Groot BL
    Structure; 2007 Nov; 15(11):1482-92. PubMed ID: 17997973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism.
    Baker BM; Scott DR; Blevins SJ; Hawse WF
    Immunol Rev; 2012 Nov; 250(1):10-31. PubMed ID: 23046120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced replica-exchange sampling to study the flexibility and plasticity of peptides and proteins.
    Ostermeir K; Zacharias M
    Biochim Biophys Acta; 2013 May; 1834(5):847-53. PubMed ID: 23298543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics simulations of proteins and peptides: from folding to drug design.
    Morra G; Meli M; Colombo G
    Curr Protein Pept Sci; 2008 Apr; 9(2):181-96. PubMed ID: 18393887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A fragment-based docking simulation for investigating peptide-protein bindings.
    Liao JM; Wang YT; Lin CS
    Phys Chem Chem Phys; 2017 Apr; 19(16):10436-10442. PubMed ID: 28379224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of flexibility and conformational selection in the binding promiscuity of PDZ domains.
    Münz M; Hein J; Biggin PC
    PLoS Comput Biol; 2012; 8(11):e1002749. PubMed ID: 23133356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling between side chain interactions and binding pocket flexibility in HLA-B*44:02 molecules investigated by molecular dynamics simulations.
    Ostermeir K; Springer S; Zacharias M
    Mol Immunol; 2015 Feb; 63(2):312-9. PubMed ID: 25146482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening.
    Bhattacherjee A; Wallin S
    PLoS Comput Biol; 2013 Oct; 9(10):e1003277. PubMed ID: 24204228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The SIRAH 2.0 Force Field: Altius, Fortius, Citius.
    Machado MR; Barrera EE; Klein F; Sóñora M; Silva S; Pantano S
    J Chem Theory Comput; 2019 Apr; 15(4):2719-2733. PubMed ID: 30810317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition.
    Lensink MF; Nadzirin N; Velankar S; Wodak SJ
    Proteins; 2020 Aug; 88(8):916-938. PubMed ID: 31886916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.