BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22154099)

  • 41. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate).
    Chen Z; Cheng S; Xu K
    Biomaterials; 2009 Apr; 30(12):2219-30. PubMed ID: 19167751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Poly(3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source.
    Akaraonye E; Moreno C; Knowles JC; Keshavarz T; Roy I
    Biotechnol J; 2012 Feb; 7(2):293-303. PubMed ID: 22147642
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases.
    Elbanna K; Lütke-Eversloh T; Jendrossek D; Luftmann H; Steinbüchel A
    Arch Microbiol; 2004 Oct; 182(2-3):212-25. PubMed ID: 15340783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequential feeding of glucose and valerate in a fed-batch culture of Ralstonia eutropha for production of poly(hydroxybutyrate-co-hydroxyvalerate) with high 3-hydroxyvalerate fraction.
    Shang L; Yim SC; Park HG; Chang HN
    Biotechnol Prog; 2004; 20(1):140-4. PubMed ID: 14763836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface engineering of PHBV by covalent collagen immobilization to improve cell compatibility.
    Wang Y; Ke Y; Ren L; Wu G; Chen X; Zhao Q
    J Biomed Mater Res A; 2009 Mar; 88(3):616-27. PubMed ID: 18314894
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Study on mechanism of different PHAs during heating by FTIR].
    Sun S; Zhou Q; Hou W; Wu Q; Chen G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Oct; 20(5):677-8. PubMed ID: 12945415
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil.
    Wen Q; Chen Z; Zhao Y; Zhang H; Feng Y
    J Hazard Mater; 2010 Mar; 175(1-3):955-9. PubMed ID: 19932560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial polyhydroxyalkanoates: Still fabulous?
    Możejko-Ciesielska J; Kiewisz R
    Microbiol Res; 2016 Nov; 192():271-282. PubMed ID: 27664746
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct.
    Shrivastav A; Mishra SK; Shethia B; Pancha I; Jain D; Mishra S
    Int J Biol Macromol; 2010 Aug; 47(2):283-7. PubMed ID: 20417229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biodegradation of plastics.
    Shimao M
    Curr Opin Biotechnol; 2001 Jun; 12(3):242-7. PubMed ID: 11404101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material.
    Getachew A; Woldesenbet F
    BMC Res Notes; 2016 Dec; 9(1):509. PubMed ID: 27955705
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies on intracellular degradation of polyhydroxyalkanoic acid-polyethylene glycol copolymer accumulated by Azotobacter chroococcum MAL-201.
    Saha SP; Patra A; Paul AK
    J Biotechnol; 2007 Nov; 132(3):325-30. PubMed ID: 17543409
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphate feeding strategy during production phase improves poly(3-hydroxybutyrate-co-3-hydroxyvalerate) storage by Ralstonia eutropha.
    Squio CR; Marangoni C; De Vecchi CS; Aragão GM
    Appl Microbiol Biotechnol; 2003 May; 61(3):257-60. PubMed ID: 12698285
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Environmental degradation of microbial polyhydroxyalkanoates and oil palm-based composites.
    Salim YS; Sharon A; Vigneswari S; Mohamad Ibrahim MN; Amirul AA
    Appl Biochem Biotechnol; 2012 May; 167(2):314-26. PubMed ID: 22544728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mutagenic and clastogenic characterization of poststerilized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer biosynthesized by Delftia acidovorans.
    Siew EL; Rajab NF; Osman AB; Sudesh K; Inayat-Hussain SH
    J Biomed Mater Res A; 2009 Dec; 91(3):786-94. PubMed ID: 19051306
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), from lab to the shelf: A review.
    Jo SY; Lim SH; Lee JY; Son J; Choi JI; Park SJ
    Int J Biol Macromol; 2024 Jun; 274(Pt 1):133157. PubMed ID: 38901504
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Utilization of chemically oxidized polystyrene as co-substrate by filamentous fungi.
    Motta O; Proto A; De Carlo F; De Caro F; Santoro E; Brunetti L; Capunzo M
    Int J Hyg Environ Health; 2009 Jan; 212(1):61-6. PubMed ID: 18222723
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetics of monomer biodegradation in soil.
    Siotto M; Sezenna E; Saponaro S; Innocenti FD; Tosin M; Bonomo L; Mezzanotte V
    J Environ Manage; 2012 Jan; 93(1):31-7. PubMed ID: 22054568
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial degradation of linseed oil-based elastomer and subsequent accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer.
    Pramanik N; Das R; Rath T; Kundu PP
    Appl Biochem Biotechnol; 2014 Oct; 174(4):1613-1630. PubMed ID: 25138597
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Biodegradable plastic production by activated sludge with different carbon sources].
    Lin D; Zhang Y; Wei C; Shen J
    Huan Jing Ke Xue; 2003 Mar; 24(2):97-101. PubMed ID: 12800667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.