These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22154121)

  • 1. Influence of inlet concentration and light intensity on the photocatalytic oxidation of nitrogen(II) oxide at the surface of Aeroxide® TiO2 P25.
    Dillert R; Stötzner J; Engel A; Bahnemann DW
    J Hazard Mater; 2012 Apr; 211-212():240-6. PubMed ID: 22154121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light intensity dependence of the kinetics of the photocatalytic oxidation of nitrogen(II) oxide at the surface of TiO2.
    Dillert R; Engel A; Große J; Lindner P; Bahnemann DW
    Phys Chem Chem Phys; 2013 Dec; 15(48):20876-86. PubMed ID: 24196523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic NOx abatement: the role of the material supporting the TiO2 active layer.
    Bianchi CL; Pirola C; Selli E; Biella S
    J Hazard Mater; 2012 Apr; 211-212():203-7. PubMed ID: 22119301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic degradation of NOx gases using TiO2-containing paint: a real scale study.
    Maggos T; Bartzis JG; Liakou M; Gobin C
    J Hazard Mater; 2007 Jul; 146(3):668-73. PubMed ID: 17532129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound.
    Ichiura H; Kitaoka T; Tanaka H
    Chemosphere; 2003 Jun; 51(9):855-60. PubMed ID: 12697175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of metal doped-titanium dioxide and behaviors on photocatalytic oxidation of nitrogen oxides.
    Liu Y; Wang HQ; Wu ZB
    J Environ Sci (China); 2007; 19(12):1505-9. PubMed ID: 18277657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric.
    Wang H; Wu Z; Zhao W; Guan B
    Chemosphere; 2007 Jan; 66(1):185-90. PubMed ID: 16806397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-free porphyrin-sensitized mesoporous titania films for visible-light indoor air oxidation.
    Ismail AA; Bahnemann DW
    ChemSusChem; 2010 Sep; 3(9):1057-62. PubMed ID: 20806316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.
    Hodgson AT; Destaillats H; Sullivan DP; Fisk WJ
    Indoor Air; 2007 Aug; 17(4):305-16. PubMed ID: 17661927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite.
    Kibanova D; Sleiman M; Cervini-Silva J; Destaillats H
    J Hazard Mater; 2012 Apr; 211-212():233-9. PubMed ID: 22226716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase.
    Wu Z; Sheng Z; Liu Y; Wang H; Tang N; Wang J
    J Hazard Mater; 2009 May; 164(2-3):542-8. PubMed ID: 18823706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process.
    Wei Z; Sun J; Xie Z; Liang M; Chen S
    J Hazard Mater; 2010 May; 177(1-3):814-21. PubMed ID: 20089355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of a TiO2 photocatalytic coating for use in plasma catalysis.
    Van Wesenbeeck K; Hauchecorne B; Lenaerts S
    Commun Agric Appl Biol Sci; 2013; 78(1):227-33. PubMed ID: 23875323
    [No Abstract]   [Full Text] [Related]  

  • 14. Enhanced photocatalytic degradation of VOCs using Ln3+-TiO2 catalysts for indoor air purification.
    Li FB; Li XZ; Ao CH; Lee SC; Hou MF
    Chemosphere; 2005 May; 59(6):787-800. PubMed ID: 15811407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of high concentration dimethyl methylphosphonate in the gas phase by repeated-batch reactions using TiO2.
    Mera N; Hirakawa T; Sano T; Takeuchi K; Seto Y; Negishi N
    J Hazard Mater; 2010 May; 177(1-3):274-80. PubMed ID: 20045249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide.
    Wang H; Wu Z; Liu Y; Wang Y
    Chemosphere; 2009 Feb; 74(6):773-8. PubMed ID: 19091376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between SO
    Wang H; Liu H; Chen Z; Veksha A; Lisak G; You C
    Chemosphere; 2020 Jun; 249():126136. PubMed ID: 32044609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of hierarchically structured ZnO spheres by facile methods and their photocatalytic deNOx properties.
    Wei Y; Huang Y; Wu J; Wang M; Guo C; Qiang D; Yin S; Sato T
    J Hazard Mater; 2013 Mar; 248-249():202-10. PubMed ID: 23357509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas.
    Yuan Y; Zhao Y; Li H; Li Y; Gao X; Zheng C; Zhang J
    J Hazard Mater; 2012 Aug; 227-228():427-35. PubMed ID: 22703732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of ultraviolet photocatalytic oxidation for indoor air applications: systematic experimental evaluation.
    Zhong L; Haghighat F; Lee CS; Lakdawala N
    J Hazard Mater; 2013 Oct; 261():130-8. PubMed ID: 23912078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.