BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22154210)

  • 61. Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain.
    Rodríguez S; Querol X; Alastuey A; Viana MM; Alarcón M; Mantilla E; Ruiz CR
    Sci Total Environ; 2004 Jul; 328(1-3):95-113. PubMed ID: 15207576
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Source apportionment of airborne particulate matter for the Speciation Trends Network site in Cleveland, OH.
    Zhou L; Hopke PK; Zhao W
    J Air Waste Manag Assoc; 2009 Mar; 59(3):321-31. PubMed ID: 19320270
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Metal concentration of PM(2.5) and PM(10) particles and seasonal variations in urban and rural environment of Agra, India.
    Kulshrestha A; Satsangi PG; Masih J; Taneja A
    Sci Total Environ; 2009 Dec; 407(24):6196-204. PubMed ID: 19793609
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multi-criteria ranking and receptor modelling of airborne fine particles at three sites in the Pearl River Delta region of China.
    Friend AJ; Ayoko GA; Guo H
    Sci Total Environ; 2011 Jan; 409(4):719-37. PubMed ID: 21146196
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Source apportionment of PM
    Han F; Kota SH; Wang Y; Zhang H
    Sci Total Environ; 2017 May; 586():115-126. PubMed ID: 28159306
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from Lahore, Pakistan: an important role for transition metals.
    Shafer MM; Perkins DA; Antkiewicz DS; Stone EA; Quraishi TA; Schauer JJ
    J Environ Monit; 2010 Mar; 12(3):704-15. PubMed ID: 20445860
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Source apportionment of PM
    Kim S; Kim TY; Yi SM; Heo J
    J Environ Manage; 2018 May; 214():325-334. PubMed ID: 29533830
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Using PM(2.5) lanthanoid elements and nonparametric wind regression to track petroleum refinery FCC emissions.
    Du L; Turner J
    Sci Total Environ; 2015 Oct; 529():65-71. PubMed ID: 26005750
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Source apportionment of ambient PM
    Taghvaee S; Sowlat MH; Mousavi A; Hassanvand MS; Yunesian M; Naddafi K; Sioutas C
    Sci Total Environ; 2018 Jul; 628-629():672-686. PubMed ID: 29455128
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Source and risk apportionment of selected VOCs and PM₂.₅ species using partially constrained receptor models with multiple time resolution data.
    Liao HT; Chou CC; Chow JC; Watson JG; Hopke PK; Wu CF
    Environ Pollut; 2015 Oct; 205():121-30. PubMed ID: 26057474
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Source apportionment of the oxidative potential of fine ambient particulate matter (PM
    Taghvaee S; Sowlat MH; Diapouli E; Manousakas MI; Vasilatou V; Eleftheriadis K; Sioutas C
    Sci Total Environ; 2019 Feb; 653():1407-1416. PubMed ID: 30759579
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models.
    Chen LW; Watson JG; Chow JC; Magliano KL
    Environ Sci Technol; 2007 Apr; 41(8):2818-26. PubMed ID: 17533844
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Source apportionment of PM10 and PM(2.5) at Tocopilla, Chile (22 degrees 05' S, 70 degrees 12' W).
    Jorquera H
    Environ Monit Assess; 2009 Jun; 153(1-4):235-51. PubMed ID: 18512124
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Source apportionment of ambient fine and coarse particulate matter at the Fort McKay community site, in the Athabasca Oil Sands Region, Alberta, Canada.
    Landis MS; Patrick Pancras J; Graney JR; White EM; Edgerton ES; Legge A; Percy KE
    Sci Total Environ; 2017 Apr; 584-585():105-117. PubMed ID: 28147291
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Source apportionment of Phoenix PM2.5 aerosol with the Unmix receptor model.
    Lewis CW; Norris GA; Conner TL; Henry RC
    J Air Waste Manag Assoc; 2003 Mar; 53(3):325-38. PubMed ID: 12661691
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Oxidant generation capacity of source-apportioned PM2.5.
    Maciejczyk P; Zhong M; Lippmann M; Chen LC
    Inhal Toxicol; 2010 Dec; 22 Suppl 2(0 2):29-36. PubMed ID: 20843277
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison of source apportionment and sensitivity analysis in a particulate matter air duality model.
    Koo B; Wilson GM; Morris RE; Dunker AM; Yarwood G
    Environ Sci Technol; 2009 Sep; 43(17):6669-75. PubMed ID: 19764233
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Concentrations and source apportionment of PM10 and associated major and trace elements in the Rhodes Island, Greece.
    Argyropoulos G; Manoli E; Kouras A; Samara C
    Sci Total Environ; 2012 Aug; 432():12-22. PubMed ID: 22705902
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Positive matrix factorization of PM(2.5): comparison and implications of using different speciation data sets.
    Xie M; Hannigan MP; Dutton SJ; Milford JB; Hemann JG; Miller SL; Schauer JJ; Peel JL; Vedal S
    Environ Sci Technol; 2012 Nov; 46(21):11962-70. PubMed ID: 22985292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.