These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22154392)

  • 1. A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics.
    Cookson AN; Lee J; Michler C; Chabiniok R; Hyde E; Nordsletten DA; Sinclair M; Siebes M; Smith NP
    J Biomech; 2012 Mar; 45(5):850-5. PubMed ID: 22154392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling multi-physics models to cardiac mechanics.
    Nordsletten DA; Niederer SA; Nash MP; Hunter PJ; Smith NP
    Prog Biophys Mol Biol; 2011 Jan; 104(1-3):77-88. PubMed ID: 19917304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogenization modeling for the mechanics of perfused myocardium.
    May-Newman K; McCulloch AD
    Prog Biophys Mol Biol; 1998; 69(2-3):463-81. PubMed ID: 9785951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-scale parameterisation of a myocardial perfusion model using whole-organ arterial networks.
    Hyde ER; Cookson AN; Lee J; Michler C; Goyal A; Sochi T; Chabiniok R; Sinclair M; Nordsletten DA; Spaan J; van den Wijngaard JP; Siebes M; Smith NP
    Ann Biomed Eng; 2014 Apr; 42(4):797-811. PubMed ID: 24297493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational study of the interaction between coronary blood flow and myocardial mechanics.
    Smith NP
    Physiol Meas; 2004 Aug; 25(4):863-77. PubMed ID: 15382827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
    Krittian S; Janoske U; Oertel H; Böhlke T
    Ann Biomed Eng; 2010 Apr; 38(4):1426-41. PubMed ID: 20058187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico coronary wave intensity analysis: application of an integrated one-dimensional and poromechanical model of cardiac perfusion.
    Lee J; Nordsletten D; Cookson A; Rivolo S; Smith N
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1535-1555. PubMed ID: 27008197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A poroelastic immersed finite element framework for modelling cardiac perfusion and fluid-structure interaction.
    Richardson SIH; Gao H; Cox J; Janiczek R; Griffith BE; Berry C; Luo X
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3446. PubMed ID: 33559359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive ventricular mechanics modelling using MRI of structure and function.
    Wang VY; Lam HI; Ennis DB; Young AA; Nash MP
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):814-21. PubMed ID: 18982680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model.
    Michler C; Cookson AN; Chabiniok R; Hyde E; Lee J; Sinclair M; Sochi T; Goyal A; Vigueras G; Nordsletten DA; Smith NP
    Int J Numer Method Biomed Eng; 2013 Feb; 29(2):217-32. PubMed ID: 23345266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-talk between cardiac muscle and coronary vasculature.
    Westerhof N; Boer C; Lamberts RR; Sipkema P
    Physiol Rev; 2006 Oct; 86(4):1263-308. PubMed ID: 17015490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modelling of left-ventricular diastolic mechanics: effect of fibre orientation and right-ventricle topology.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2015 Feb; 48(4):604-612. PubMed ID: 25596634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfusion studies of steady flow in poroelastic myocardium tissue.
    Ng EY; Ghista DN; Jegathese RC
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):349-57. PubMed ID: 16393872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic interaction between myocardial contraction and coronary flow.
    Beyar R; Sideman S
    Adv Exp Med Biol; 1997; 430():123-37. PubMed ID: 9330724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational simulation of intracoronary flow based on real coronary geometry.
    Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling total heart function.
    Hunter PJ; Pullan AJ; Smaill BH
    Annu Rev Biomed Eng; 2003; 5():147-77. PubMed ID: 14527312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active contraction of the cardiac ventricle and distortion of the microstructural architecture.
    Pezzuto S; Ambrosi D
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1578-96. PubMed ID: 25319381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking the state of the heart: meshless model for cardiac mechanics.
    Lluch È; De Craene M; Bijnens B; Sermesant M; Noailly J; Camara O; Morales HG
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1549-1561. PubMed ID: 31161351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function.
    Wang VY; Lam HI; Ennis DB; Cowan BR; Young AA; Nash MP
    Med Image Anal; 2009 Oct; 13(5):773-84. PubMed ID: 19664952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.