These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 22154598)

  • 1. Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus.
    Isemer R; Mulisch M; Schäfer A; Kirchner S; Koop HU; Krupinska K
    FEBS Lett; 2012 Jan; 586(1):85-8. PubMed ID: 22154598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Located WHIRLY1 Interacting with LHCA1 Alters Photochemical Activities of Photosystem I and Is Involved in Light Adaptation in Arabidopsis.
    Huang D; Lin W; Deng B; Ren Y; Miao Y
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29112140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two novel proteins, MRL7 and its paralog MRL7-L, have essential but functionally distinct roles in chloroplast development and are involved in plastid gene expression regulation in Arabidopsis.
    Qiao J; Ma C; Wimmelbacher M; Börnke F; Luo M
    Plant Cell Physiol; 2011 Jun; 52(6):1017-30. PubMed ID: 21515910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of WHIRLY1 by CIPK14 Shifts Its Localization and Dual Functions in Arabidopsis.
    Ren Y; Li Y; Jiang Y; Wu B; Miao Y
    Mol Plant; 2017 May; 10(5):749-763. PubMed ID: 28412544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear regulators with a second home in organelles.
    Krause K; Krupinska K
    Trends Plant Sci; 2009 Apr; 14(4):194-9. PubMed ID: 19285907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense.
    Wirthmueller L; Zhang Y; Jones JD; Parker JE
    Curr Biol; 2007 Dec; 17(23):2023-9. PubMed ID: 17997306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Dual Targeting of the Phytochrome Signaling Component HEMERA/pTAC12 to Plastids and the Nucleus.
    Nevarez PA; Qiu Y; Inoue H; Yoo CY; Benfey PN; Schnell DJ; Chen M
    Plant Physiol; 2017 Apr; 173(4):1953-1966. PubMed ID: 28232584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells.
    Iwabuchi K; Sakai T; Takagi S
    Plant Cell Physiol; 2007 Sep; 48(9):1291-8. PubMed ID: 17652112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci.
    Zhao M; Morohashi K; Hatlestad G; Grotewold E; Lloyd A
    Development; 2008 Jun; 135(11):1991-9. PubMed ID: 18434419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is VIP1 important for Agrobacterium-mediated transformation?
    Shi Y; Lee LY; Gelvin SB
    Plant J; 2014 Sep; 79(5):848-60. PubMed ID: 24953893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual targeting and retrograde translocation: regulators of plant nuclear gene expression can be sequestered by plastids.
    Krause K; Oetke S; Krupinska K
    Int J Mol Sci; 2012; 13(9):11085-11101. PubMed ID: 23109840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastids unleashed: their development and their integration in plant development.
    Lopez-Juez E; Pyke KA
    Int J Dev Biol; 2005; 49(5-6):557-77. PubMed ID: 16096965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The plastid-nucleus located DNA/RNA binding protein WHIRLY1 regulates microRNA-levels during stress in barley (Hordeum vulgare L.).
    Świda-Barteczka A; Krieger-Liszkay A; Bilger W; Voigt U; Hensel G; Szweykowska-Kulinska Z; Krupinska K
    RNA Biol; 2018; 15(7):886-891. PubMed ID: 29947287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana.
    Chen Y; Asano T; Fujiwara MT; Yoshida S; Machida Y; Yoshioka Y
    Plant Cell Physiol; 2009 May; 50(5):956-69. PubMed ID: 19318374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastid transformation as an expression tool for plant-derived biopharmaceuticals.
    Scotti N; Cardi T
    Methods Mol Biol; 2012; 847():451-66. PubMed ID: 22351028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1.
    Kucharewicz W; Distelfeld A; Bilger W; Müller M; Munné-Bosch S; Hensel G; Krupinska K
    J Exp Bot; 2017 Feb; 68(5):983-996. PubMed ID: 28338757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of photosynthate partitioning by high-level expression of phosphoglucomutase in tobacco chloroplasts.
    Uematsu K; Suzuki N; Iwamae T; Inui M; Yukawa H
    Biosci Biotechnol Biochem; 2012; 76(7):1315-21. PubMed ID: 22785487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Large-scale analysis of nuclear-encoded chloroplast proteins using tagging system in Arabidopsis].
    Motohashi R; Myouga F; Shinozaki K
    Tanpakushitsu Kakusan Koso; 2005 Nov; 50(14 Suppl):1926-7. PubMed ID: 16318363
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism.
    Kirchberger S; Tjaden J; Neuhaus HE
    Plant J; 2008 Oct; 56(1):51-63. PubMed ID: 18564385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of plastids in pollen grains: involvement of FtsZ1 in pollen plastid division.
    Tang LY; Nagata N; Matsushima R; Chen Y; Yoshioka Y; Sakamoto W
    Plant Cell Physiol; 2009 Apr; 50(4):904-8. PubMed ID: 19282372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.