These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22154771)

  • 1. Lactococcus lactis-based vaccines from laboratory bench to human use: an overview.
    Bahey-El-Din M
    Vaccine; 2012 Jan; 30(4):685-90. PubMed ID: 22154771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactococcus lactis-based vaccines: current status and future perspectives.
    Bahey-El-Din M; Gahan CG
    Hum Vaccin; 2011 Jan; 7(1):106-9. PubMed ID: 21263226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-tiered biological containment strategy for Lactococcus lactis-based vaccine or immunotherapy vectors.
    Hanin A; Culligan EP; Casey PG; Bahey-El-Din M; Hill C; Gahan CG
    Hum Vaccin Immunother; 2014; 10(2):333-7. PubMed ID: 24196273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress on lactococcus lactis expressing heterologous antigens as live mucosal vaccines].
    Shi D; Song Y; Li YJ
    Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):680-3. PubMed ID: 17037080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oral administration of Lactococcus lactis delivered heat shock protein 65 attenuates atherosclerosis in low-density lipoprotein receptor-deficient mice.
    Jing H; Yong L; Haiyan L; Yanjun M; Yun X; Yu Z; Taiming L; Rongyue C; Liang J; Jie W; Li Z; Jingjing L
    Vaccine; 2011 May; 29(24):4102-9. PubMed ID: 21497632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous protein production and delivery systems for Lactococcus lactis.
    Nouaille S; Ribeiro LA; Miyoshi A; Pontes D; Le Loir Y; Oliveira SC; Langella P; Azevedo V
    Genet Mol Res; 2003 Mar; 2(1):102-11. PubMed ID: 12917806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer.
    de Azevedo M; Meijerink M; Taverne N; Pereira VB; LeBlanc JG; Azevedo V; Miyoshi A; Langella P; Wells JM; Chatel JM
    Vaccine; 2015 Sep; 33(38):4807-12. PubMed ID: 26241952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactococcus lactis as a cell factory for delivery of therapeutic proteins.
    Bahey-El-Din M; Gahan CG; Griffin BT
    Curr Gene Ther; 2010 Feb; 10(1):34-45. PubMed ID: 20156189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting diseases with genetically engineered Lactococcus lactis and its course towards medical translation.
    Villatoro-Hernandez J; Montes-de-Oca-Luna R; Kuipers OP
    Expert Opin Biol Ther; 2011 Mar; 11(3):261-7. PubMed ID: 21204744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-dependent systemic antibody responses and immunisation-associated changes in mice orally and nasally immunised with Lactococcus lactis expressing a malaria parasite protein.
    Moorthy SA; Yasawardena SG; Ramasamy R
    Vaccine; 2009 Aug; 27(36):4947-52. PubMed ID: 19545652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live bacterial delivery systems for development of mucosal vaccines.
    Thole JE; van Dalen PJ; Havenith CE; Pouwels PH; Seegers JF; Tielen FD; van der Zee MD; Zegers ND; Shaw M
    Curr Opin Mol Ther; 2000 Feb; 2(1):94-9. PubMed ID: 11249657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of food-grade cloning and expression vectors for Lactococcus lactis.
    Liu CQ; Su P; Khunajakr N; Deng YM; Sumual S; Kim WS; Tandianus JE; Dunn NW
    J Appl Microbiol; 2005; 98(1):127-35. PubMed ID: 15610425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactococcus lactis: from the dairy industry to antigen and therapeutic protein delivery.
    Bahey-El-Din M; Gahan CG
    Discov Med; 2010 May; 9(48):455-61. PubMed ID: 20515614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoprotection against influenza H5N1 virus by oral administration of enteric-coated recombinant Lactococcus lactis mini-capsules.
    Lei H; Xu Y; Chen J; Wei X; Lam DM
    Virology; 2010 Nov; 407(2):319-24. PubMed ID: 20850860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral immunization of mice with Lactococcus lactis expressing the rotavirus VP8* protein.
    Rodríguez-Díaz J; Montava R; Viana R; Buesa J; Pérez-Martínez G; Monedero V
    Biotechnol Lett; 2011 Jun; 33(6):1169-75. PubMed ID: 21302132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral immunization with live Lactococcus lactis expressing rotavirus VP8 subunit induces specific immune response in mice.
    Marelli B; Perez AR; Banchio C; de Mendoza D; Magni C
    J Virol Methods; 2011 Jul; 175(1):28-37. PubMed ID: 21530589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell surface display system for Lactococcus lactis: a novel development for oral vaccine.
    Raha AR; Varma NR; Yusoff K; Ross E; Foo HL
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):75-81. PubMed ID: 15635459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection.
    Hanniffy SB; Carter AT; Hitchin E; Wells JM
    J Infect Dis; 2007 Jan; 195(2):185-93. PubMed ID: 17191163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems.
    Pontes DS; de Azevedo MS; Chatel JM; Langella P; Azevedo V; Miyoshi A
    Protein Expr Purif; 2011 Oct; 79(2):165-75. PubMed ID: 21704169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface warfare against pathogens using mucosal vaccines.
    Clements JD
    Nat Biotechnol; 1997 Jul; 15(7):622-3. PubMed ID: 9219260
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.