BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 221548)

  • 1. Modulation of in vitro erythropoiesis. Studies with euthyroid and hypothyroid dogs.
    Popovic WJ; Brown JE; Adamson JW
    J Clin Invest; 1979 Jul; 64(1):56-61. PubMed ID: 221548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of thyroid hormones on in vitro erythropoiesis. Mediation by a receptor with beta adrenergic properties.
    Popovic WJ; Brown JE; Adamson JW
    J Clin Invest; 1977 Oct; 60(4):907-13. PubMed ID: 19501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of in vitro erythropoiesis. The influence of beta-adrenergic agonists on erythroid colony formation.
    Brown JE; Adamson JW
    J Clin Invest; 1977 Jul; 60(1):70-7. PubMed ID: 17618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thyroid hormone regulates ontogeny of beta adrenergic receptors and adenylate cyclase in rat heart and kidney: effects of propylthiouracil-induced perinatal hypothyroidism.
    Pracyk JB; Slotkin TA
    J Pharmacol Exp Ther; 1992 Jun; 261(3):951-8. PubMed ID: 1318378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta 2 receptor-mediated stimulation of Friend erythroleukemia cell growth by thyroid hormones.
    Gauwerky CE; Bersch NL; Golde DW
    Exp Hematol; 1981 Sep; 9(8):821-8. PubMed ID: 6276212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered adrenergic response and specificity of the receptors in rat ascites hepatoma AH130.
    Sanae F; Miyamoto K; Koshiura R
    Cancer Res; 1989 Nov; 49(22):6242-6. PubMed ID: 2553251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of thyroid status in the ontogeny of adrenergic cell signaling in rat brain: beta receptors, adenylate cyclase, ornithine decarboxylase and c-fos protooncogene expression.
    Wagner JP; Seidler FJ; Lappi SE; McCook EC; Slotkin TA
    J Pharmacol Exp Ther; 1994 Oct; 271(1):472-83. PubMed ID: 7965748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous distribution of adrenergic receptors in coronary arteries and their influence on coronary arterial tone.
    Turlapaty PD; Altura BM
    Microcirc Endothelium Lymphatics; 1985; 2(6):617-42. PubMed ID: 3016491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unmodified erythropoietic response to a beta adrenergic agonist in hypothyroid mice.
    Barceló AC; Bozzini C; Olivera MI; Bozzini CE
    Acta Physiol Pharmacol Ther Latinoam; 1997; 47(4):251-3. PubMed ID: 9504186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The characteristics of the adrenergic reaction of the portal vein in the rat liver].
    Nesterova LA; Shaĭymov BK; Manukhin BN
    Fiziol Zh SSSR Im I M Sechenova; 1990 Sep; 76(9):1159-64. PubMed ID: 1963856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G proteins, beta-adrenoreceptors and beta-adrenergic responsiveness in immature and adult rat ventricular myocardium: influence of neonatal hypo- and hyperthyroidism.
    Novotny J; Bourová L; Málková O; Svoboda P; Kolár F
    J Mol Cell Cardiol; 1999 Apr; 31(4):761-72. PubMed ID: 10329204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adrenergic receptors in the nucleus accumbens shell differentially modulate dopamine and acetylcholine receptor-mediated turning behaviour.
    Ikeda H; Moribe S; Sato M; Kotani A; Koshikawa N; Cools AR
    Eur J Pharmacol; 2007 Jan; 554(2-3):175-82. PubMed ID: 17113067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of alpha and beta adrenergic receptor stimulation on the adenylate cyclase activity of human adipocytes.
    Burns TW; Langley PE
    J Cyclic Nucleotide Res; 1975; 1(5):321-8. PubMed ID: 1225939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hyperthyroidism and hypothyroidism on alpha 1- and alpha 2-adrenergic responsiveness in rat aortic smooth muscle.
    Rahmani MA; Cheema IR; Sen S; Peoples B; Riley SR
    Artery; 1987; 14(6):362-83. PubMed ID: 2823747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological identification of the alpha-adrenergic receptor type which inhibits the beta-adrenergic activated adenylate cyclase system in cultured astrocytes.
    Northam WJ; Bedoy CA; Mobley PL
    Glia; 1989; 2(2):129-33. PubMed ID: 2542160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The differentiation of avian skeletal muscle in culture: changes in responsiveness of adenylyl cyclase to prostaglandin E1 and adrenergic agonists.
    Curtis DH; Zalin RJ
    J Cell Physiol; 1985 May; 123(2):219-27. PubMed ID: 2858489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis.
    Zaremba TG; Fishman PH
    Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adrenergic reactions of sheep rumen in vitro.
    Kania BF
    Acta Physiol Pol; 1980; 31(4):341-8. PubMed ID: 6255747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid status and adrenergic receptor subtypes in the rat: comparison of receptor density and responsiveness.
    Fox AW; Juberg EN; May JM; Johnson RD; Abel PW; Minneman KP
    J Pharmacol Exp Ther; 1985 Dec; 235(3):715-23. PubMed ID: 3001274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of adrenergic agonists and blockers on antigen-induced DNA synthesis in vitro.
    Winchurch RA; Mardiney MR
    Biomedicine; 1977 Feb; 26(1):36-42. PubMed ID: 16672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.