BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22154826)

  • 1. The use of heavy nitrogen in quantitative proteomics experiments in plants.
    Arsova B; Kierszniowska S; Schulze WX
    Trends Plant Sci; 2012 Feb; 17(2):102-12. PubMed ID: 22154826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SILAC and alternatives in studying cellular proteomes of plants.
    Matthes A; Köhl K; Schulze WX
    Methods Mol Biol; 2014; 1188():65-83. PubMed ID: 25059605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MALDI-imaging mass spectrometry - An emerging technique in plant biology.
    Kaspar S; Peukert M; Svatos A; Matros A; Mock HP
    Proteomics; 2011 May; 11(9):1840-50. PubMed ID: 21462348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation in mass-spectrometry-based proteomics.
    Schulze WX; Usadel B
    Annu Rev Plant Biol; 2010; 61():491-516. PubMed ID: 20192741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative plant proteomics.
    Bindschedler LV; Cramer R
    Proteomics; 2011 Feb; 11(4):756-75. PubMed ID: 21246733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a definition of the complete proteome of plant peroxisomes: Where experimental proteomics must be complemented by bioinformatics.
    Reumann S
    Proteomics; 2011 May; 11(9):1764-79. PubMed ID: 21472859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing identification and quantitation of 15N-labeled proteins in comparative proteomics.
    Gouw JW; Tops BB; Mortensen P; Heck AJ; Krijgsveld J
    Anal Chem; 2008 Oct; 80(20):7796-803. PubMed ID: 18808151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic labeling of model organisms using heavy nitrogen (15N).
    Gouw JW; Tops BB; Krijgsveld J
    Methods Mol Biol; 2011; 753():29-42. PubMed ID: 21604113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of plant protein complexes by mass spectrometry.
    Pflieger D; Bigeard J; Hirt H
    Proteomics; 2011 May; 11(9):1824-33. PubMed ID: 21472857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics approaches to understand protein phosphorylation in pathway modulation.
    Schulze WX
    Curr Opin Plant Biol; 2010 Jun; 13(3):280-87. PubMed ID: 20097120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics.
    Matros A; Kaspar S; Witzel K; Mock HP
    Phytochemistry; 2011 Jul; 72(10):963-74. PubMed ID: 21176926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction of the disulfide proteome: application of a technique for the analysis of plant storage proteins as well as allergens.
    Yano H; Kuroda S
    J Proteome Res; 2008 Aug; 7(8):3071-9. PubMed ID: 18624400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology.
    Agrawal GK; Rakwal R
    Proteomics; 2011 May; 11(9):1630-49. PubMed ID: 21462347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular shotgun proteomics in plants: looking beyond the usual suspects.
    Haynes PA; Roberts TH
    Proteomics; 2007 Aug; 7(16):2963-75. PubMed ID: 17703495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability assessment of (15)N metabolic labeling-based proteomics workflow in mouse plasma and brain.
    Filiou MD; Soukupova M; Rewerts C; Webhofer C; Turck CW; Maccarrone G
    Mol Biosyst; 2015 Jun; 11(6):1536-42. PubMed ID: 25782008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing protein extraction from plant tissues for enhanced proteomics analysis.
    Wang W; Tai F; Chen S
    J Sep Sci; 2008 Jun; 31(11):2032-9. PubMed ID: 18615819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering.
    Wang H; Alvarez S; Hicks LM
    J Proteome Res; 2012 Jan; 11(1):487-501. PubMed ID: 22059437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA).
    Guo G; Li N
    Phytochemistry; 2011 Jul; 72(10):1028-39. PubMed ID: 21315391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of isotope-coded protein labeling (ICPL) in the quantitative analysis of complex proteomes.
    Paradela A; Marcilla M; Navajas R; Ferreira L; Ramos-Fernandez A; Fernández M; Mariscotti JF; García-del Portillo F; Albar JP
    Talanta; 2010 Feb; 80(4):1496-502. PubMed ID: 20082807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reciprocal 15N-labeling proteomic analysis of expanding Arabidopsis leaves subjected to osmotic stress indicates importance of mitochondria in preserving plastid functions.
    Skirycz A; Memmi S; De Bodt S; Maleux K; Obata T; Fernie AR; Devreese B; Inzé D
    J Proteome Res; 2011 Mar; 10(3):1018-29. PubMed ID: 21142212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.