These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22154864)

  • 1. Mineral coatings modulate β-TCP stability and enable growth factor binding and release.
    Suárez-González D; Lee JS; Lan Levengood SK; Vanderby R; Murphy WL
    Acta Biomater; 2012 Mar; 8(3):1117-24. PubMed ID: 22154864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence.
    Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD
    Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled multiple growth factor delivery from bone tissue engineering scaffolds via designed affinity.
    Suárez-González D; Lee JS; Diggs A; Lu Y; Nemke B; Markel M; Hollister SJ; Murphy WL
    Tissue Eng Part A; 2014 Aug; 20(15-16):2077-87. PubMed ID: 24350567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects.
    Wei L; Yu D; Wang M; Deng L; Wu G; Liu Y
    Tissue Eng Part A; 2020 Feb; 26(3-4):120-129. PubMed ID: 31436137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable dual growth factor delivery from polyelectrolyte multilayer films.
    Shah NJ; Macdonald ML; Beben YM; Padera RF; Samuel RE; Hammond PT
    Biomaterials; 2011 Sep; 32(26):6183-93. PubMed ID: 21645919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release.
    Suárez-González D; Barnhart K; Migneco F; Flanagan C; Hollister SJ; Murphy WL
    Biomaterials; 2012 Jan; 33(2):713-21. PubMed ID: 22014948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating.
    Crouzier T; Sailhan F; Becquart P; Guillot R; Logeart-Avramoglou D; Picart C
    Biomaterials; 2011 Oct; 32(30):7543-54. PubMed ID: 21783243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate.
    Takahashi Y; Yamamoto M; Tabata Y
    Biomaterials; 2005 Aug; 26(23):4856-65. PubMed ID: 15763265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery of BMP-2 by two clinically available apatite materials: in vitro and in vivo comparison.
    Hänseler P; Ehrbar M; Kruse A; Fischer E; Schibli R; Ghayor C; Weber FE
    J Biomed Mater Res A; 2015 Feb; 103(2):628-38. PubMed ID: 24771467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics.
    Xie L; Yu H; Deng Y; Yang W; Liao L; Long Q
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1007-1015. PubMed ID: 26652459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platelet-derived growth factor enhancement of two alloplastic bone matrices.
    Bateman J; Intini G; Margarone J; Goodloe S; Bush P; Lynch SE; Dziak R
    J Periodontol; 2005 Nov; 76(11):1833-41. PubMed ID: 16274301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustained release of vitamin C from PCL coated TCP induces proliferation and differentiation of osteoblast cells and suppresses osteosarcoma cell growth.
    Bose S; Sarkar N; Vahabzadeh S
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110096. PubMed ID: 31546344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The controlled resorption of porous alpha-tricalcium phosphate using a hydroxypropylcellulose coating.
    Kitamura M; Ohtsuki C; Iwasaki H; Ogata S; Tanihara M; Miyazaki T
    J Mater Sci Mater Med; 2004 Oct; 15(10):1153-8. PubMed ID: 15516878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL
    Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of water glass coating of tricalcium phosphate granules on in vivo bone formation.
    Ryu SM; Ahn MW; Park CH; Lee GW; Song IH; Ahn HS; Kim J; Kim S
    J Biomater Appl; 2018 Nov; 33(5):662-672. PubMed ID: 30396326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications.
    Fadeeva IV; Lazoryak BI; Davidova GA; Murzakhanov FF; Gabbasov BF; Petrakova NV; Fosca M; Barinov SM; Vadalà G; Uskoković V; Zheng Y; Rau JV
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112410. PubMed ID: 34579919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolution rate of zinc-containing beta-tricalcium phosphate ceramics.
    Ito A; Senda K; Sogo Y; Oyane A; Yamazaki A; Legeros RZ
    Biomed Mater; 2006 Sep; 1(3):134-9. PubMed ID: 18458394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined delivery of bone morphogenetic protein-2 and insulin-like growth factor-1 from nano-poly (γ-glutamic acid)/β-tricalcium phosphate-based calcium phosphate cement and its effect on bone regeneration in vitro.
    Shu X; Feng J; Feng J; Huang X; Li L; Shi Q
    J Biomater Appl; 2017 Nov; 32(5):547-560. PubMed ID: 29113568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials.
    He F; Zhang J; Yang F; Zhu J; Tian X; Chen X
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():257-65. PubMed ID: 25746269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.
    Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J
    Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.