These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 22154913)
1. Surface properties of amino-functionalized poly(ε-caprolactone) membranes and the improvement of human mesenchymal stem cell behavior. Zhang Y; Zhang Y; Chen M; Yan J; Ye Z; Zhou Y; Tan W; Lang M J Colloid Interface Sci; 2012 Feb; 368(1):64-9. PubMed ID: 22154913 [TBL] [Abstract][Full Text] [Related]
2. Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-epsilon-caprolactone. Marletta G; Ciapetti G; Satriano C; Perut F; Salerno M; Baldini N Biomaterials; 2007 Feb; 28(6):1132-40. PubMed ID: 17118444 [TBL] [Abstract][Full Text] [Related]
3. Galactosylated poly(ε-caprolactone) membrane promoted liver-specific functions of HepG2 cells in vitro. Zhang Y; Zhang Y; Chen M; Zhou Y; Lang M Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():52-8. PubMed ID: 24907736 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers. Yang Y; Hua C; Dong CM Biomacromolecules; 2009 Aug; 10(8):2310-8. PubMed ID: 19618927 [TBL] [Abstract][Full Text] [Related]
5. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(epsilon-caprolactone) as drug carriers with enhanced properties. Zhang W; Li Y; Liu L; Sun Q; Shuai X; Zhu W; Chen Y Biomacromolecules; 2010 May; 11(5):1331-8. PubMed ID: 20405912 [TBL] [Abstract][Full Text] [Related]
6. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Hsu SH; Tang CM; Lin CC Biomaterials; 2004 Nov; 25(25):5593-601. PubMed ID: 15159075 [TBL] [Abstract][Full Text] [Related]
7. Impact of silicone-based block copolymer surfactants on the surface and bulk microscopic organization of a biodegradable polymer, poly(epsilon-caprolactone). Viville P; Lazzaroni R; Dubois P; Kotzev A; Geerts Y; Borcia G; Pireaux JJ Biomacromolecules; 2003; 4(3):696-703. PubMed ID: 12741787 [TBL] [Abstract][Full Text] [Related]
8. Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers. Rim NG; Lee JH; Jeong SI; Lee BK; Kim CH; Shin H Macromol Biosci; 2009 Aug; 9(8):795-804. PubMed ID: 19434677 [TBL] [Abstract][Full Text] [Related]
9. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958 [TBL] [Abstract][Full Text] [Related]
10. Surface property and in vitro biodegradation of microspheres fabricated by poly(epsilon-caprolactone-b-ethylene oxide) diblock copolymers. Yu G; Zhang Y; Shi X; Li Z; Gan Z J Biomed Mater Res A; 2008 Mar; 84(4):926-39. PubMed ID: 17647229 [TBL] [Abstract][Full Text] [Related]
11. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells. Chen JP; Chang YS Colloids Surf B Biointerfaces; 2011 Aug; 86(1):169-75. PubMed ID: 21514800 [TBL] [Abstract][Full Text] [Related]
13. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
14. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration. Basile MA; d'Ayala GG; Malinconico M; Laurienzo P; Coudane J; Nottelet B; Ragione FD; Oliva A Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():457-68. PubMed ID: 25579947 [TBL] [Abstract][Full Text] [Related]
15. Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating. Tan F; O'Neill F; Naciri M; Dowling D; Al-Rubeai M Acta Biomater; 2012 Apr; 8(4):1627-38. PubMed ID: 22202907 [TBL] [Abstract][Full Text] [Related]
16. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Ajili SH; Ebrahimi NG; Soleimani M Acta Biomater; 2009 Jun; 5(5):1519-30. PubMed ID: 19249261 [TBL] [Abstract][Full Text] [Related]
17. Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells. Castano H; O'Rear EA; McFetridge PS; Sikavitsas VI Macromol Biosci; 2004 Aug; 4(8):785-94. PubMed ID: 15468272 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of cell affinity on poly(L-lactide) and poly(epsilon-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces. Ajami-Henriquez D; Rodríguez M; Sabino M; Castillo RV; Müller AJ; Boschetti-de-Fierro A; Abetz C; Abetz V; Dubois P J Biomed Mater Res A; 2008 Nov; 87(2):405-17. PubMed ID: 18186046 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of phosphoryl-choline-capped poly(epsilon-caprolactone)-poly(ethylene oxide) di-block co-polymers and its surface modification on polyurethanes. Zhang T; Song Z; Chen H; Yu X; Jiang Z J Biomater Sci Polym Ed; 2008; 19(4):509-24. PubMed ID: 18318962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]