BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 22155039)

  • 1. Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty.
    Ryali S; Chen T; Supekar K; Menon V
    Neuroimage; 2012 Feb; 59(4):3852-61. PubMed ID: 22155039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts.
    Chen T; Ryali S; Qin S; Menon V
    Neuroimage; 2013 Nov; 82():87-100. PubMed ID: 23747287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel joint sparse partial correlation method for estimating group functional networks.
    Liang X; Connelly A; Calamante F
    Hum Brain Mapp; 2016 Mar; 37(3):1162-77. PubMed ID: 26859311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparse regularization techniques provide novel insights into outcome integration processes.
    Mohr H; Wolfensteller U; Frimmel S; Ruge H
    Neuroimage; 2015 Jan; 104():163-76. PubMed ID: 25467302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation.
    Wang Y; Kang J; Kemmer PB; Guo Y
    Front Neurosci; 2016; 10():123. PubMed ID: 27242395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse logistic regression for whole-brain classification of fMRI data.
    Ryali S; Supekar K; Abrams DA; Menon V
    Neuroimage; 2010 Jun; 51(2):752-64. PubMed ID: 20188193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing group differences in brain functional connectivity: using correlations or partial correlations?
    Kim J; Wozniak JR; Mueller BA; Pan W
    Brain Connect; 2015 May; 5(4):214-31. PubMed ID: 25492804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates.
    Hinne M; Janssen RJ; Heskes T; van Gerven MA
    PLoS Comput Biol; 2015 Nov; 11(11):e1004534. PubMed ID: 26540089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparse Graphical Models for Functional Connectivity Networks: Best Methods and the Autocorrelation Issue.
    Zhu Y; Cribben I
    Brain Connect; 2018 Apr; 8(3):139-165. PubMed ID: 29634321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage.
    Mejia AF; Nebel MB; Barber AD; Choe AS; Pekar JJ; Caffo BS; Lindquist MA
    Neuroimage; 2018 May; 172():478-491. PubMed ID: 29391241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sparse representation-based method for parcellation of the resting brain and its application to treatment-resistant major depressive disorder.
    Ge R; Blumberger DM; Downar J; Daskalakis ZJ; Tham JCW; Lam RW; Vila-Rodriguez F
    J Neurosci Methods; 2017 Oct; 290():57-68. PubMed ID: 28739164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation-Weighted Sparse Group Representation for Brain Network Construction in MCI Classification.
    Yu R; Zhang H; An L; Chen X; Wei Z; Shen D
    Med Image Comput Comput Assist Interv; 2016 Oct; 9900():37-45. PubMed ID: 28642938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time scale properties of task and resting-state functional connectivity: Detrended partial cross-correlation analysis.
    Ide JS; Li CR
    Neuroimage; 2018 Jun; 173():240-248. PubMed ID: 29454934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparse DCM for whole-brain effective connectivity from resting-state fMRI data.
    Prando G; Zorzi M; Bertoldo A; Corbetta M; Zorzi M; Chiuso A
    Neuroimage; 2020 Mar; 208():116367. PubMed ID: 31812714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification.
    Liang Y; Liu C; Luan XZ; Leung KS; Chan TM; Xu ZB; Zhang H
    BMC Bioinformatics; 2013 Jun; 14():198. PubMed ID: 23777239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization.
    Brier MR; Mitra A; McCarthy JE; Ances BM; Snyder AZ
    Neuroimage; 2015 Nov; 121():29-38. PubMed ID: 26208872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.
    Colclough GL; Woolrich MW; Harrison SJ; Rojas López PA; Valdes-Sosa PA; Smith SM
    Neuroimage; 2018 Sep; 178():370-384. PubMed ID: 29746906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive sparse modeling of fMRI data for improved classification, regression, and visualization using the k-support norm.
    Belilovsky E; Gkirtzou K; Misyrlis M; Konova AB; Honorio J; Alia-Klein N; Goldstein RZ; Samaras D; Blaschko MB
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 1():40-46. PubMed ID: 25861834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.