These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22155044)

  • 1. Pattern analysis of EEG responses to speech and voice: influence of feature grouping.
    Hausfeld L; De Martino F; Bonte M; Formisano E
    Neuroimage; 2012 Feb; 59(4):3641-51. PubMed ID: 22155044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attentional influences on functional mapping of speech sounds in human auditory cortex.
    Obleser J; Elbert T; Eulitz C
    BMC Neurosci; 2004 Jul; 5():24. PubMed ID: 15268765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N400 during recognition of voice identity and vocal affect.
    Toivonen M; Rämä P
    Neuroreport; 2009 Sep; 20(14):1245-9. PubMed ID: 19623091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Who" is saying "what"? Brain-based decoding of human voice and speech.
    Formisano E; De Martino F; Bonte M; Goebel R
    Science; 2008 Nov; 322(5903):970-3. PubMed ID: 18988858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociable functional cortical topographies for working memory maintenance of voice identity and location.
    Rämä P; Poremba A; Sala JB; Yee L; Malloy M; Mishkin M; Courtney SM
    Cereb Cortex; 2004 Jul; 14(7):768-80. PubMed ID: 15084491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of adaptation to voice identity.
    Schweinberger SR; Walther C; Zäske R; Kovács G
    Br J Psychol; 2011 Nov; 102(4):748-64. PubMed ID: 21988382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voice identity recognition: functional division of the right STS and its behavioral relevance.
    Schall S; Kiebel SJ; Maess B; von Kriegstein K
    J Cogn Neurosci; 2015 Feb; 27(2):280-91. PubMed ID: 25170793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.
    Hertrich I; Dietrich S; Ackermann H
    J Cogn Neurosci; 2011 Jan; 23(1):221-37. PubMed ID: 20044895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study.
    Zaehle T; Wüstenberg T; Meyer M; Jäncke L
    Eur J Neurosci; 2004 Nov; 20(9):2447-56. PubMed ID: 15525285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory brainstem correlates of perceptual timing deficits.
    Johnson KL; Nicol TG; Zecker SG; Kraus N
    J Cogn Neurosci; 2007 Mar; 19(3):376-85. PubMed ID: 17335387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separate neural processes for retrieval of voice identity and word content in working memory.
    Relander K; Rämä P
    Brain Res; 2009 Feb; 1252():143-51. PubMed ID: 19063872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning discrimination trajectories in EEG sensor space: application to inferring task difficulty.
    Luo A; Sajda P
    J Neural Eng; 2006 Mar; 3(1):L1-6. PubMed ID: 16510933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Auditory perception and language: functional imaging of speech sensitive auditory cortex].
    Samson Y; Belin P; Thivard L; Boddaert N; Crozier S; Zilbovicius M
    Rev Neurol (Paris); 2001 Sep; 157(8-9 Pt 1):837-46. PubMed ID: 11677406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network of speech monitoring overlaps with overt speech production and comprehension networks: a sequential spatial and temporal ICA study.
    van de Ven V; Esposito F; Christoffels IK
    Neuroimage; 2009 Oct; 47(4):1982-91. PubMed ID: 19481159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG classification in a single-trial basis for vowel speech perception using multivariate empirical mode decomposition.
    Kim J; Lee SK; Lee B
    J Neural Eng; 2014 Jun; 11(3):036010. PubMed ID: 24809722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological (EEG, sEEG, MEG) evidence for multiple audiovisual interactions in the human auditory cortex.
    Besle J; Bertrand O; Giard MH
    Hear Res; 2009 Dec; 258(1-2):143-51. PubMed ID: 19573583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal patterns of oscillatory brain activity during auditory word recognition in children: a synthetic aperture magnetometry study.
    Mohamed IS; Cheyne D; Gaetz WC; Otsubo H; Logan WJ; Carter Snead O; Pang EW
    Int J Psychophysiol; 2008 May; 68(2):141-8. PubMed ID: 18359115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling the effects of phonation and articulation: hemispheric asymmetries in the auditory N1m response of the human brain.
    Tiitinen H; Mäkelä AM; Mäkinen V; May PJ; Alku P
    BMC Neurosci; 2005 Oct; 6():62. PubMed ID: 16225699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical generators of slow evoked responses elicited by spatial and nonspatial auditory working memory tasks.
    Anurova I; Artchakov D; Korvenoja A; Ilmoniemi RJ; Aronen HJ; Carlson S
    Clin Neurophysiol; 2005 Jul; 116(7):1644-54. PubMed ID: 15897006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of location and pattern changes of natural sounds in the human auditory cortex.
    Altmann CF; Bledowski C; Wibral M; Kaiser J
    Neuroimage; 2007 Apr; 35(3):1192-200. PubMed ID: 17320413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.