These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1047 related articles for article (PubMed ID: 22155051)

  • 1. The molecular basis of retinal ganglion cell death in glaucoma.
    Almasieh M; Wilson AM; Morquette B; Cueva Vargas JL; Di Polo A
    Prog Retin Eye Res; 2012 Mar; 31(2):152-81. PubMed ID: 22155051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss.
    Nuschke AC; Farrell SR; Levesque JM; Chauhan BC
    Exp Eye Res; 2015 Dec; 141():111-24. PubMed ID: 26070986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma.
    Kim KY; Perkins GA; Shim MS; Bushong E; Alcasid N; Ju S; Ellisman MH; Weinreb RN; Ju WK
    Cell Death Dis; 2015 Aug; 6(8):e1839. PubMed ID: 26247724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glaucoma and optic nerve repair.
    Diekmann H; Fischer D
    Cell Tissue Res; 2013 Aug; 353(2):327-37. PubMed ID: 23512141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention.
    Vernazza S; Oddone F; Tirendi S; Bassi AM
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma.
    Kimura A; Guo X; Noro T; Harada C; Tanaka K; Namekata K; Harada T
    Neurosci Lett; 2015 Feb; 588():108-13. PubMed ID: 25555796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms.
    Levkovitch-Verbin H
    Prog Brain Res; 2015; 220():37-57. PubMed ID: 26497784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mini-Review: Impaired Axonal Transport and Glaucoma.
    Fahy ET; Chrysostomou V; Crowston JG
    Curr Eye Res; 2016; 41(3):273-83. PubMed ID: 26125320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased bioavailability of cyclic guanylate monophosphate prevents retinal ganglion cell degeneration.
    Wareham LK; Dordea AC; Schleifer G; Yao V; Batten A; Fei F; Mertz J; Gregory-Ksander M; Pasquale LR; Buys ES; Sappington RM
    Neurobiol Dis; 2019 Jan; 121():65-75. PubMed ID: 30213732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of mesencephalic astrocyte-derived neurotrophic factor in retinal ganglion cells under oxidative stress.
    Ko JA; Komatsu K; Okumichi H; Kiuchi Y
    Cell Biochem Funct; 2021 Jan; 39(1):98-106. PubMed ID: 32613670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optic neuropathies: characteristic features and mechanisms of retinal ganglion cell loss.
    You Y; Gupta VK; Li JC; Klistorner A; Graham SL
    Rev Neurosci; 2013; 24(3):301-21. PubMed ID: 23612594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy in axonal degeneration in glaucomatous optic neuropathy.
    Munemasa Y; Kitaoka Y
    Prog Retin Eye Res; 2015 Jul; 47():1-18. PubMed ID: 25816798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma.
    Wu JH; Zhang SH; Nickerson JM; Gao FJ; Sun Z; Chen XY; Zhang SJ; Gao F; Chen JY; Luo Y; Wang Y; Sun XH
    Neurobiol Dis; 2015 Feb; 74():167-179. PubMed ID: 25478814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glial cell modulator ibudilast attenuates neuroinflammation and enhances retinal ganglion cell viability in glaucoma through protein kinase A signaling.
    Cueva Vargas JL; Belforte N; Di Polo A
    Neurobiol Dis; 2016 Sep; 93():156-71. PubMed ID: 27163643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy Metabolism in the Inner Retina in Health and Glaucoma.
    Liu H; Prokosch V
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33916246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology.
    Basavarajappa D; Galindo-Romero C; Gupta V; Agudo-Barriuso M; Gupta VB; Graham SL; Chitranshi N
    Mol Aspects Med; 2023 Dec; 94():101216. PubMed ID: 37856930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective Strategies in Glaucoma.
    Gossman CA; Christie J; Webster MK; Linn DM; Linn CL
    Curr Pharm Des; 2016; 22(14):2178-92. PubMed ID: 26818878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen sulfide supplement attenuates the apoptosis of retinal ganglion cells in experimental glaucoma.
    Huang S; Huang P; Lin Z; Liu X; Xu X; Guo L; Shen X; Li C; Zhong Y
    Exp Eye Res; 2018 Mar; 168():33-48. PubMed ID: 29326065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma.
    Gupta V; You Y; Li J; Gupta V; Golzan M; Klistorner A; van den Buuse M; Graham S
    Biochim Biophys Acta; 2014 Sep; 1842(9):1567-78. PubMed ID: 24942931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal ganglion cell dendrite pathology and synapse loss: Implications for glaucoma.
    Agostinone J; Di Polo A
    Prog Brain Res; 2015; 220():199-216. PubMed ID: 26497792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.