These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22155057)

  • 1. Fragmentation of a linoleate-derived γ-hydroperoxy-α,β-unsaturated epoxide to γ-hydroxy- and γ-oxo-alkenals involves a unique pseudo-symmetrical diepoxycarbinyl radical.
    Gu X; Salomon RG
    Free Radic Biol Med; 2012 Feb; 52(3):601-606. PubMed ID: 22155057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide.
    Takahashi R; Goto T; Oe T; Lee SH
    Chem Biol Interact; 2015 Sep; 239():87-99. PubMed ID: 26111765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds.
    Sousa BC; Pitt AR; Spickett CM
    Free Radic Biol Med; 2017 Oct; 111():294-308. PubMed ID: 28192230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals.
    Schneider C; Tallman KA; Porter NA; Brash AR
    J Biol Chem; 2001 Jun; 276(24):20831-8. PubMed ID: 11259420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme-catalyzed degradation of linoleate 9-hydroperoxide (9-HPODE) forms two allylic epoxy-ketones via a proposed pseudo-symmetrical diepoxy radical intermediate.
    Noguchi S; Boeglin WE; Porter NA; Brash AR
    Free Radic Res; 2024; 58(6-7):430-438. PubMed ID: 39099129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygenation of (3Z)-alkenals to 4-hydroxy-(2E)-alkenals in plant extracts: a nonenzymatic process.
    Noordermeer MA; Feussner I; Kolbe A; Veldink GA; Vliegenthart JF
    Biochem Biophys Res Commun; 2000 Oct; 277(1):112-6. PubMed ID: 11027649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of FeII-mediated decomposition of a linoleic acid-derived lipid hydroperoxide by liquid chromatography/mass spectrometry.
    Lee SH; Oe T; Arora JS; Blair IA
    J Mass Spectrom; 2005 May; 40(5):661-8. PubMed ID: 15739161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radical oxidation of 15-(S)-hydroxyeicosatetraenoic acid with the Fenton reagent: characterization of an epoxy-alcohol and cytotoxic 4-hydroxy-2E-nonenal from the heptatrienyl radical pathway.
    Manini P; Briganti S; Fabbri C; Picardo M; Napolitano A; d'Ischia M
    Chem Phys Lipids; 2006 Jul; 142(1-2):14-22. PubMed ID: 16581048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aldehydic lipid peroxidation products derived from linoleic acid.
    Spiteller P; Kern W; Reiner J; Spiteller G
    Biochim Biophys Acta; 2001 Apr; 1531(3):188-208. PubMed ID: 11325611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent adducts arising from the decomposition products of lipid hydroperoxides in the presence of cytochrome c.
    Williams MV; Wishnok JS; Tannenbaum SR
    Chem Res Toxicol; 2007 May; 20(5):767-75. PubMed ID: 17407328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Previously unknown aldehydic lipid peroxidation compounds of arachidonic acid.
    Mlakar A; Spiteller G
    Chem Phys Lipids; 1996 Jan; 79(1):47-53. PubMed ID: 8907242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-catalyzed oxidation of 2-alkenals generates genotoxic 4-oxo-2-alkenals during lipid peroxidation.
    Nuka E; Tomono S; Ishisaka A; Kato Y; Miyoshi N; Kawai Y
    Biosci Biotechnol Biochem; 2016 Oct; 80(10):2007-13. PubMed ID: 27281652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis.
    Spickett CM
    Redox Biol; 2013 Jan; 1(1):145-52. PubMed ID: 24024147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Alkylpyrrole formation from 4,5-epoxy-2-alkenals.
    Zamora R; Hidalgo FJ
    Chem Res Toxicol; 2005 Feb; 18(2):342-8. PubMed ID: 15720141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2'-deoxycytidine in free nucleosides and double-stranded DNA as the major target of lipid peroxidation products.
    Kawai Y; Uchida K; Osawa T
    Free Radic Biol Med; 2004 Mar; 36(5):529-41. PubMed ID: 14980698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular peroxyl radical reactions during autoxidation of hydroxy and hydroperoxy arachidonic acids generate a novel series of epoxidized products.
    Schneider C; Boeglin WE; Yin H; Porter NA; Brash AR
    Chem Res Toxicol; 2008 Apr; 21(4):895-903. PubMed ID: 18324788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions.
    Catalá A
    Chem Phys Lipids; 2009 Jan; 157(1):1-11. PubMed ID: 18977338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin C conjugates of genotoxic lipid peroxidation products: structural characterization and detection in human plasma.
    Sowell J; Frei B; Stevens JF
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17964-9. PubMed ID: 15608056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometric characterization of protein modification by the products of nonenzymatic oxidation of linoleic acid.
    Zhu X; Tang X; Anderson VE; Sayre LM
    Chem Res Toxicol; 2009 Aug; 22(8):1386-97. PubMed ID: 19537826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abundance of DNA adducts of 4-oxo-2-alkenals, lipid peroxidation-derived highly reactive genotoxins.
    Kawai Y; Nuka E
    J Clin Biochem Nutr; 2018 Jan; 62(1):3-10. PubMed ID: 29362517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.