BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 22155371)

  • 1. Impaired redox signaling and mitochondrial uncoupling contributes vascular inflammation and cardiac dysfunction in type 1 diabetes: Protective role of arjunolic acid.
    Manna P; Sil PC
    Biochimie; 2012 Mar; 94(3):786-97. PubMed ID: 22155371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways.
    Manna P; Sinha M; Sil PC
    Toxicology; 2009 Mar; 257(1-2):53-63. PubMed ID: 19133311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: protective role of arjunolic acid.
    Manna P; Ghosh J; Das J; Sil PC
    Toxicol Appl Pharmacol; 2010 Apr; 244(2):114-29. PubMed ID: 20053369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IkappaBalpha/NF-kappaB, MAPKs, and mitochondria-dependent pathways: Prophylactic role of arjunolic acid.
    Manna P; Das J; Ghosh J; Sil PC
    Free Radic Biol Med; 2010 Jun; 48(11):1465-84. PubMed ID: 20188823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prophylactic role of arjunolic acid in response to streptozotocin mediated diabetic renal injury: activation of polyol pathway and oxidative stress responsive signaling cascades.
    Manna P; Sinha M; Sil PC
    Chem Biol Interact; 2009 Oct; 181(3):297-308. PubMed ID: 19682444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arjunolic acid: beneficial role in type 1 diabetes and its associated organ pathophysiology.
    Manna P; Sil PC
    Free Radic Res; 2012 Jul; 46(7):815-30. PubMed ID: 22486656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response.
    Khanra R; Dewanjee S; K Dua T; Sahu R; Gangopadhyay M; De Feo V; Zia-Ul-Haq M
    J Transl Med; 2015 Jan; 13():6. PubMed ID: 25591455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetaminophen induced renal injury via oxidative stress and TNF-alpha production: therapeutic potential of arjunolic acid.
    Ghosh J; Das J; Manna P; Sil PC
    Toxicology; 2010 Jan; 268(1-2):8-18. PubMed ID: 19922764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taurine ameliorate alloxan induced oxidative stress and intrinsic apoptotic pathway in the hepatic tissue of diabetic rats.
    Rashid K; Das J; Sil PC
    Food Chem Toxicol; 2013 Jan; 51():317-29. PubMed ID: 23092809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic β-cells from apoptosis via mitochondrial dependent pathway.
    Bhattacharya S; Manna P; Gachhui R; Sil PC
    Toxicol Appl Pharmacol; 2011 Dec; 257(2):272-83. PubMed ID: 21982801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway.
    Ghosh J; Das J; Manna P; Sil PC
    Toxicol Appl Pharmacol; 2009 Oct; 240(1):73-87. PubMed ID: 19616567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protective role of arjunolic acid against doxorubicin induced intracellular ROS dependent JNK-p38 and p53-mediated cardiac apoptosis.
    Ghosh J; Das J; Manna P; Sil PC
    Biomaterials; 2011 Jul; 32(21):4857-66. PubMed ID: 21486680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy.
    Cai L; Wang Y; Zhou G; Chen T; Song Y; Li X; Kang YJ
    J Am Coll Cardiol; 2006 Oct; 48(8):1688-97. PubMed ID: 17045908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arjunolic acid, a triterpenoid saponin, prevents acetaminophen (APAP)-induced liver and hepatocyte injury via the inhibition of APAP bioactivation and JNK-mediated mitochondrial protection.
    Ghosh J; Das J; Manna P; Sil PC
    Free Radic Biol Med; 2010 Feb; 48(4):535-53. PubMed ID: 19969075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis.
    Das J; Vasan V; Sil PC
    Toxicol Appl Pharmacol; 2012 Jan; 258(2):296-308. PubMed ID: 22138235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dose treatment with atorvastatin leads to anti-oxidative and anti-inflammatory effects in diabetes mellitus.
    Riad A; Du J; Stiehl S; Westermann D; Mohr Z; Sobirey M; Doehner W; Adams V; Pauschinger M; Schultheiss HP; Tschöpe C
    Eur J Pharmacol; 2007 Aug; 569(3):204-11. PubMed ID: 17669395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eicosapentaenoic acid restores diabetic tubular injury through regulating oxidative stress and mitochondrial apoptosis.
    Taneda S; Honda K; Tomidokoro K; Uto K; Nitta K; Oda H
    Am J Physiol Renal Physiol; 2010 Dec; 299(6):F1451-61. PubMed ID: 20844021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of oxidative stress by a new low-molecular-weight antioxidant improves metabolic alterations in a nonobese mouse diabetes model.
    Novelli M; D'Aleo V; Lupi R; Paolini M; Soleti A; Marchetti P; Masiello P
    Pancreas; 2007 Nov; 35(4):e10-7. PubMed ID: 18090226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue ascorbic acid and polyol pathway metabolism in experimental diabetes.
    Lindsay RM; Jamieson NS; Walker SA; McGuigan CC; Smith W; Baird JD
    Diabetologia; 1998 May; 41(5):516-23. PubMed ID: 9628267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective role of a coumarin-derived schiff base scaffold against tertiary butyl hydroperoxide (TBHP)-induced oxidative impairment and cell death via MAPKs, NF-κB and mitochondria-dependent pathways.
    Ghosh M; Manna P; Sil PC
    Free Radic Res; 2011 May; 45(5):620-37. PubMed ID: 21391895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.