BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22155642)

  • 1. Transmembrane domains interactions within the membrane milieu: principles, advances and challenges.
    Fink A; Sal-Man N; Gerber D; Shai Y
    Biochim Biophys Acta; 2012 Apr; 1818(4):974-83. PubMed ID: 22155642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline localized to the interaction interface can mediate self-association of transmembrane domains.
    Sal-Man N; Gerber D; Shai Y
    Biochim Biophys Acta; 2014 Sep; 1838(9):2313-8. PubMed ID: 24841754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of GxxxG Motifs in Transmembrane Domain Interactions.
    Teese MG; Langosch D
    Biochemistry; 2015 Aug; 54(33):5125-35. PubMed ID: 26244771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular recognition at the membrane-water interface: controlling integral peptide helices by off-membrane nucleobase pairing.
    Schneggenburger PE; Müllar S; Worbs B; Steinem C; Diederichsen U
    J Am Chem Soc; 2010 Jun; 132(23):8020-8. PubMed ID: 20481532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The composition rather than position of polar residues (QxxS) drives aspartate receptor transmembrane domain dimerization in vivo.
    Sal-Man N; Gerber D; Shai Y
    Biochemistry; 2004 Mar; 43(8):2309-13. PubMed ID: 14979727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Lys-Trp cation-π interaction mediates the dimerization and function of the chloride intracellular channel protein 1 transmembrane domain.
    Peter B; Polyansky AA; Fanucchi S; Dirr HW
    Biochemistry; 2014 Jan; 53(1):57-67. PubMed ID: 24328417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein structure in membrane domains.
    Rath A; Deber CM
    Annu Rev Biophys; 2012; 41():135-55. PubMed ID: 22577820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptobrevin transmembrane domain determines the structure and dynamics of the SNARE motif and the linker region.
    Han J; Pluhackova K; Bruns D; Böckmann RA
    Biochim Biophys Acta; 2016 Apr; 1858(4):855-65. PubMed ID: 26851777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hetero-assembly between all-L- and all-D-amino acid transmembrane domains: forces involved and implication for inactivation of membrane proteins.
    Sal-Man N; Gerber D; Shai Y
    J Mol Biol; 2004 Nov; 344(3):855-64. PubMed ID: 15533450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties.
    Cymer F; Veerappan A; Schneider D
    Biochim Biophys Acta; 2012 Apr; 1818(4):963-73. PubMed ID: 21827736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Transmembrane Domain of HIV-1 gp41 Inhibits T-Cell Activation by Targeting Multiple T-Cell Receptor Complex Components through Its GxxxG Motif.
    Rotem E; Reuven EM; Klug YA; Shai Y
    Biochemistry; 2016 Feb; 55(7):1049-57. PubMed ID: 26828096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane domain oligomerization propensity determined by ToxR assay.
    Joce C; Wiener A; Yin H
    J Vis Exp; 2011 May; (51):. PubMed ID: 21654625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast.
    Rayner JC; Pelham HR
    EMBO J; 1997 Apr; 16(8):1832-41. PubMed ID: 9155009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain.
    Contreras FX; Ernst AM; Haberkant P; Björkholm P; Lindahl E; Gönen B; Tischer C; Elofsson A; von Heijne G; Thiele C; Pepperkok R; Wieland F; Brügger B
    Nature; 2012 Jan; 481(7382):525-9. PubMed ID: 22230960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs.
    Unterreitmeier S; Fuchs A; Schäffler T; Heym RG; Frishman D; Langosch D
    J Mol Biol; 2007 Nov; 374(3):705-18. PubMed ID: 17949750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo design of transmembrane helix-helix interactions and measurement of stability in a biological membrane.
    Nash A; Notman R; Dixon AM
    Biochim Biophys Acta; 2015 May; 1848(5):1248-57. PubMed ID: 25732028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Six amino acids define a minimal dimerization sequence and stabilize a transmembrane helix dimer by close packing and hydrogen bonding.
    Weber M; Schneider D
    FEBS Lett; 2013 Jun; 587(11):1592-6. PubMed ID: 23583446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic systems for monitoring interactions of transmembrane domains in bacterial membranes.
    Tome L; Steindorf D; Schneider D
    Methods Mol Biol; 2013; 1063():57-91. PubMed ID: 23975772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The GxxxG-containing transmembrane domain of the CCK4 oncogene does not encode preferential self-interactions.
    Kobus FJ; Fleming KG
    Biochemistry; 2005 Feb; 44(5):1464-70. PubMed ID: 15683231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.