These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22155929)

  • 1. Longitudinal and transversal propagation of excitation along the tubular system of rat fast-twitch muscle fibres studied by high speed confocal microscopy.
    Edwards JN; Cully TR; Shannon TR; Stephenson DG; Launikonis BS
    J Physiol; 2012 Feb; 590(3):475-92. PubMed ID: 22155929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat.
    Posterino GS; Lamb GD; Stephenson DG
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):131-7. PubMed ID: 10944176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sarcoplasmic reticulum Ca2+ content on action potential-induced Ca2+ release in rat skeletal muscle fibres.
    Posterino GS; Lamb GD
    J Physiol; 2003 Aug; 551(Pt 1):219-37. PubMed ID: 12844504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.
    Cully TR; Edwards JN; Murphy RM; Launikonis BS
    J Physiol; 2016 Jun; 594(11):2795-810. PubMed ID: 26775687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of low cytoplasmic [ATP] on excitation-contraction coupling in fast-twitch muscle fibres of the rat.
    Dutka TL; Lamb GD
    J Physiol; 2004 Oct; 560(Pt 2):451-68. PubMed ID: 15308682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue.
    Dutka TL; Murphy RM; Stephenson DG; Lamb GD
    J Physiol; 2008 Feb; 586(3):875-87. PubMed ID: 18033812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Events of the excitation-contraction-relaxation (E-C-R) cycle in fast- and slow-twitch mammalian muscle fibres relevant to muscle fatigue.
    Stephenson DG; Lamb GD; Stephenson GM
    Acta Physiol Scand; 1998 Mar; 162(3):229-45. PubMed ID: 9578368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.
    Nielsen OB; Ørtenblad N; Lamb GD; Stephenson DG
    J Physiol; 2004 May; 557(Pt 1):133-46. PubMed ID: 15034125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue.
    Cairns SP; Chin ER; Renaud JM
    J Appl Physiol (1985); 2007 Jul; 103(1):359-68. PubMed ID: 17412789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analysis of the relationships between subthreshold electrical properties and excitability in skeletal muscle.
    Pedersen TH; L-H Huang C; Fraser JA
    J Gen Physiol; 2011 Jul; 138(1):73-93. PubMed ID: 21670208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tubular system excitability: an essential component of excitation-contraction coupling in fast-twitch fibres of vertebrate skeletal muscle.
    Stephenson DG
    J Muscle Res Cell Motil; 2006; 27(5-7):259-74. PubMed ID: 16874453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transverse tubular system depolarization reduces tetanic force in rat skeletal muscle fibers by impairing action potential repriming.
    Dutka TL; Lamb GD
    Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2112-21. PubMed ID: 17329405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raised intracellular [Ca2+] abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad.
    Lamb GD; Junankar PR; Stephenson DG
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):349-62. PubMed ID: 8847631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue-induced change in T-system excitability and its major cause in rat fast-twitch skeletal muscle in vivo.
    Watanabe D; Wada M
    J Physiol; 2020 Nov; 598(22):5195-5211. PubMed ID: 32833287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ammonium ions on the depolarization-induced and direct activation of the contractile apparatus in mechanically skinned fast-twitch skeletal muscle fibres of the rat.
    Stephenson GM; Stephenson DG
    J Muscle Res Cell Motil; 1996 Dec; 17(6):611-6. PubMed ID: 8994080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle.
    Takekura H; Fujinami N; Nishizawa T; Ogasawara H; Kasuga N
    J Physiol; 2001 Jun; 533(Pt 2):571-83. PubMed ID: 11389213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of regulated passive membrane conductance in action potential-firing fast- and slow-twitch muscle.
    Pedersen TH; Macdonald WA; de Paoli FV; Gurung IS; Nielsen OB
    J Gen Physiol; 2009 Oct; 134(4):323-37. PubMed ID: 19786585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage sensor current, SR Ca
    Bibollet H; Nguyen EL; Miranda DR; Ward CW; Voss AA; Schneider MF; Hernández-Ochoa EO
    Physiol Rep; 2023 May; 11(9):e15675. PubMed ID: 37147904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Ca2+ and Sr2+ activation characteristics in skinned muscle fibre preparations with different proportions of myofibrillar isoforms.
    Lynch GS; Stephenson DG; Williams DA
    J Muscle Res Cell Motil; 1995 Feb; 16(1):65-78. PubMed ID: 7751406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres.
    Mutungi G; Ranatunga KW
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):253-65. PubMed ID: 9490847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.