These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22155981)

  • 1. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells.
    Dewan R; Fischer S; Meyer-Rochow VB; Özdemir Y; Hamraz S; Knipp D
    Bioinspir Biomim; 2012 Mar; 7(1):016003. PubMed ID: 22155981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.
    Song YM; Jeong Y; Yeo CI; Lee YT
    Opt Express; 2012 Nov; 20(23):A916-23. PubMed ID: 23326839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.
    Palanchoke U; Jovanov V; Kurz H; Obermeyer P; Stiebig H; Knipp D
    Opt Express; 2012 Mar; 20(6):6340-7. PubMed ID: 22418515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.
    Lin C; Povinelli ML
    Opt Express; 2009 Oct; 17(22):19371-81. PubMed ID: 19997158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and analysis of prismatic bioinspired compound lenses for solar cells: II. Multifrequency analysis.
    Chiadini F; Fiumara V; Scaglione A; Lakhtakia A
    Bioinspir Biomim; 2011 Mar; 6(1):014002. PubMed ID: 21183779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS.
    Feng T; Xie D; Lin Y; Zhao H; Chen Y; Tian H; Ren T; Li X; Li Z; Wang K; Wu D; Zhu H
    Nanoscale; 2012 Mar; 4(6):2130-3. PubMed ID: 22337348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings.
    Oh SJ; Chhajed S; Poxson DJ; Cho J; Schubert EF; Tark SJ; Kim D; Kim JK
    Opt Express; 2013 Jan; 21 Suppl 1():A157-66. PubMed ID: 23389267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency enhancement of silicon solar cells using a nano-scale honeycomb broadband anti-reflection structure.
    Huang CK; Sun KW; Chang WL
    Opt Express; 2012 Jan; 20(1):A85-93. PubMed ID: 22379678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.
    Tsai SH; Chang HC; Wang HH; Chen SY; Lin CA; Chen SA; Chueh YL; He JH
    ACS Nano; 2011 Dec; 5(12):9501-10. PubMed ID: 22034901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light on the moth-eye corneal nipple array of butterflies.
    Stavenga DG; Foletti S; Palasantzas G; Arikawa K
    Proc Biol Sci; 2006 Mar; 273(1587):661-7. PubMed ID: 16608684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bioinspired solution for spectrally selective thermochromic VO2 coated intelligent glazing.
    Taylor A; Parkin I; Noor N; Tummeltshammer C; Brown MS; Papakonstantinou I
    Opt Express; 2013 Sep; 21 Suppl 5():A750-64. PubMed ID: 24104571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells.
    Chen JY; Chang WL; Huang CK; Sun KW
    Opt Express; 2011 Jul; 19(15):14411-9. PubMed ID: 21934803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.
    Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL
    Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation and analysis of prismatic bioinspired compound lenses for solar cells.
    Chiadini F; Fiumara V; Scaglione A; Lakhtakia A
    Bioinspir Biomim; 2010 Jun; 5(2):026002. PubMed ID: 20479523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast fabrication of nano-structured anti-reflection layers for enhancement of solar cells performance using plasma sputtering and infrared assisted roller embossing techniques.
    Liu SJ; Liao CT
    Opt Express; 2012 Feb; 20(5):5143-50. PubMed ID: 22418320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric particle and void resonators for thin film solar cell textures.
    Mann SA; Grote RR; Osgood RM; Schuller JA
    Opt Express; 2011 Dec; 19(25):25729-40. PubMed ID: 22273965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light trapping in thin-film silicon solar cells with submicron surface texture.
    Dewan R; Marinkovic M; Noriega R; Phadke S; Salleo A; Knipp D
    Opt Express; 2009 Dec; 17(25):23058-65. PubMed ID: 20052232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling light trapping in nanostructured solar cells.
    Ferry VE; Polman A; Atwater HA
    ACS Nano; 2011 Dec; 5(12):10055-64. PubMed ID: 22082201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparative Study of Crystallography and Defect Structure of Corneal Nipple Array in
    Varija Raghu S; Thamankar R
    ACS Omega; 2020 Sep; 5(37):23662-23671. PubMed ID: 32984686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.