BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 22156042)

  • 21. A 1μm diameter tip fiber-based surface plasmon resonance system for single unit optical neural recording.
    Moon H; Kim SA; Jun SB; Lee J; Oh U; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():498-500. PubMed ID: 22254357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation.
    Chen CH; McCullagh EA; Pun SH; Mak PU; Vai MI; Mak PI; Klug A; Lei TC
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):557-568. PubMed ID: 28221990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microelectrode array for chronic deep-brain microstimulation and recording.
    McCreery D; Lossinsky A; Pikov V; Liu X
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation.
    Stanslaski S; Afshar P; Cong P; Giftakis J; Stypulkowski P; Carlson D; Linde D; Ullestad D; Avestruz AT; Denison T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):410-21. PubMed ID: 22275720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation.
    Feng H; Shu W; Chen X; Zhang Y; Lu Y; Wang L; Chen Y
    Biomed Microdevices; 2015 Oct; 17(5):101. PubMed ID: 26371060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A neurophotonic device for stimulation and recording of neural microcircuits.
    Wang J; Borton DA; Zhang J; Burwell RD; Nurmikko AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2935-8. PubMed ID: 21095989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA; Leiser SC; Gerhardt GA; Barbee KA; Chapin JK
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.
    Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066
    [No Abstract]   [Full Text] [Related]  

  • 32. Single-sweep voltage-sensitive dye imaging of interacting identified neurons.
    Stein W; Städele C; Andras P
    J Neurosci Methods; 2011 Jan; 194(2):224-34. PubMed ID: 20969892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A modular 256-channel micro electrode array platform for in vitro and in vivo neural stimulation and recording: BioMEA.
    Charvet G; Billoint O; Gharbi S; Heuschkel M; Georges C; Kauffmann T; Pellissier A; Yvert B; Guillemaud R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1804-7. PubMed ID: 21095937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A polymer-based neural microimplant for optogenetic applications: design and first in vivo study.
    Rubehn B; Wolff SB; Tovote P; Lüthi A; Stieglitz T
    Lab Chip; 2013 Feb; 13(4):579-88. PubMed ID: 23306183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An integrated multi-electrode-optrode array for in vitro optogenetics.
    Welkenhuysen M; Hoffman L; Luo Z; De Proft A; Van den Haute C; Baekelandt V; Debyser Z; Gielen G; Puers R; Braeken D
    Sci Rep; 2016 Feb; 6():20353. PubMed ID: 26832455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.
    Lee J; Ozden I; Song YK; Nurmikko AV
    Nat Methods; 2015 Dec; 12(12):1157-62. PubMed ID: 26457862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-site optical excitation using ChR2 and micro-LED array.
    Grossman N; Poher V; Grubb MS; Kennedy GT; Nikolic K; McGovern B; Berlinguer Palmini R; Gong Z; Drakakis EM; Neil MA; Dawson MD; Burrone J; Degenaar P
    J Neural Eng; 2010 Feb; 7(1):16004. PubMed ID: 20075504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Depth-dependent cerebral hemodynamic responses following direct cortical electrical stimulation (DCES) revealed by in vivo dual-optical imaging techniques.
    Lee S; Koh D; Jo A; Lim HY; Jung YJ; Kim CK; Seo Y; Im CH; Kim BM; Suh M
    Opt Express; 2012 Mar; 20(7):6932-43. PubMed ID: 22453371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.