These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons. Saha R; Muthuswamy J Biomed Microdevices; 2007 Jun; 9(3):345-60. PubMed ID: 17203379 [TBL] [Abstract][Full Text] [Related]
6. Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. Lu Y; Li T; Zhao X; Li M; Cao Y; Yang H; Duan YY Biomaterials; 2010 Jul; 31(19):5169-81. PubMed ID: 20382421 [TBL] [Abstract][Full Text] [Related]
7. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Bajaj P; Akin D; Gupta A; Sherman D; Shi B; Auciello O; Bashir R Biomed Microdevices; 2007 Dec; 9(6):787-94. PubMed ID: 17530409 [TBL] [Abstract][Full Text] [Related]
10. Diamond microelectrodes and their applications in biological studies. Martínez-Huitle CA Small; 2007 Sep; 3(9):1474-6. PubMed ID: 17645289 [No Abstract] [Full Text] [Related]
11. The effect of ultra-nanocrystalline diamond films on the proliferation and differentiation of neural stem cells. Chen YC; Lee DC; Hsiao CY; Chung YF; Chen HC; Thomas JP; Pong WF; Tai NH; Lin IN; Chiu IM Biomaterials; 2009 Jul; 30(20):3428-35. PubMed ID: 19406465 [TBL] [Abstract][Full Text] [Related]
12. Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing. Fletcher PC; Felts JR; Dai Z; Jacobs TD; Zeng H; Lee W; Sheehan PE; Carlisle JA; Carpick RW; King WP ACS Nano; 2010 Jun; 4(6):3338-44. PubMed ID: 20481445 [TBL] [Abstract][Full Text] [Related]
13. Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever. Kim HJ; Moldovan N; Felts JR; Somnath S; Dai Z; Jacobs TD; Carpick RW; Carlisle JA; King WP Nanotechnology; 2012 Dec; 23(49):495302. PubMed ID: 23149947 [TBL] [Abstract][Full Text] [Related]
14. Induction and regulation of differentiation in neural stem cells on ultra-nanocrystalline diamond films. Chen YC; Lee DC; Tsai TY; Hsiao CY; Liu JW; Kao CY; Lin HK; Chen HC; Palathinkal TJ; Pong WF; Tai NH; Lin IN; Chiu IM Biomaterials; 2010 Jul; 31(21):5575-87. PubMed ID: 20427083 [TBL] [Abstract][Full Text] [Related]
16. Microelectrode array fabrication by electrical discharge machining and chemical etching. Fofonoff TA; Martel SM; Hatsopoulos NG; Donoghue JP; Hunter IW IEEE Trans Biomed Eng; 2004 Jun; 51(6):890-5. PubMed ID: 15188855 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing. Abouzar MH; Poghossian A; Razavi A; Williams OA; Bijnens N; Wagner P; Schöning MJ Biosens Bioelectron; 2009 Jan; 24(5):1298-304. PubMed ID: 18801654 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. Kim R; Nam Y J Neural Eng; 2015 Apr; 12(2):026010. PubMed ID: 25738544 [TBL] [Abstract][Full Text] [Related]
19. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing. Hébert C; Warnking J; Depaulis A; Garçon LA; Mermoux M; Eon D; Mailley P; Omnès F Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():25-31. PubMed ID: 25491956 [TBL] [Abstract][Full Text] [Related]
20. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]