BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22156141)

  • 1. A response surface model predicting the in vivo insertion behavior of micromachined neural implants.
    Andrei A; Welkenhuysen M; Nuttin B; Eberle W
    J Neural Eng; 2012 Feb; 9(1):016005. PubMed ID: 22156141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo.
    Sridharan A; Nguyen JK; Capadona JR; Muthuswamy J
    J Neural Eng; 2015 Jun; 12(3):036002. PubMed ID: 25834105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2013 Jan; 12(1):43-54. PubMed ID: 22389193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of implant diameter, insertion depth, and loading angle on stress/strain fields in implant/jawbone systems: finite element analysis.
    Qian L; Todo M; Matsushita Y; Koyano K
    Int J Oral Maxillofac Implants; 2009; 24(5):877-86. PubMed ID: 19865628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral astrocyte response to micromachined silicon implants.
    Turner JN; Shain W; Szarowski DH; Andersen M; Martins S; Isaacson M; Craighead H
    Exp Neurol; 1999 Mar; 156(1):33-49. PubMed ID: 10192775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on the mechanical interaction between silicon neural microprobes and rat dura mater during insertion.
    Fekete Z; Németh A; Márton G; Ulbert I; Pongrácz A
    J Mater Sci Mater Med; 2015 Feb; 26(2):70. PubMed ID: 25631267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-specific non-linear biomechanical model of needle insertion into brain.
    Wittek A; Dutta-Roy T; Taylor Z; Horton A; Washio T; Chinzei K; Miller K
    Comput Methods Biomech Biomed Engin; 2008 Apr; 11(2):135-46. PubMed ID: 18297493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of insertion speed on tissue response and insertion mechanics of a chronically implanted silicon-based neural probe.
    Welkenhuysen M; Andrei A; Ameye L; Eberle W; Nuttin B
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3250-9. PubMed ID: 21896383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element modeling of retinal prosthesis mechanics.
    Basinger BC; Rowley AP; Chen K; Humayun MS; Weiland JD
    J Neural Eng; 2009 Oct; 6(5):055006. PubMed ID: 19721183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical simulation of various surface roughnesses and geometric designs on an immediately loaded dental implant.
    Huang HL; Hsu JT; Fuh LJ; Lin DJ; Chen MY
    Comput Biol Med; 2010 May; 40(5):525-32. PubMed ID: 20385379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance.
    Paralikar KJ; Clement RS
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of superficial roughness and design on the primary stability of dental implants.
    Dos Santos MV; Elias CN; Cavalcanti Lima JH
    Clin Implant Dent Relat Res; 2011 Sep; 13(3):215-23. PubMed ID: 19744197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of bone inelastic response in interaction phenomena with dental implants.
    Natali AN; Carniel EL; Pavan PG
    Dent Mater; 2008 Apr; 24(4):561-9. PubMed ID: 18207565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Needle insertion simulation by arbitrary Lagrangian-Eulerian method.
    Yamaguchi S; Satake K; Morikawa S; Shirai Y; Tanaka HT
    Stud Health Technol Inform; 2011; 163():710-2. PubMed ID: 21335885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical evaluation of a newly designed single-stage craniofacial implant: a pilot study.
    Khamis MM; Medra A; Gauld J
    J Prosthet Dent; 2008 Nov; 100(5):375-83. PubMed ID: 18992571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests.
    Zahouani H; Pailler-Mattei C; Sohm B; Vargiolu R; Cenizo V; Debret R
    Skin Res Technol; 2009 Feb; 15(1):68-76. PubMed ID: 19152581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic behavior evaluation of a micro-machined neural implant with optimized design based on an experimentally derived model.
    Andrei A; Welkenhuysen M; Ameye L; Nuttin B; Eberle W
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2292-5. PubMed ID: 22254799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of variables influencing implant fixation by direct bone apposition.
    Thomas KA; Cook SD
    J Biomed Mater Res; 1985 Oct; 19(8):875-901. PubMed ID: 3880349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.