These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22156240)

  • 1. Investigation of the effects of commensurability on friction between concentric carbon nanotubes.
    Zhu C; Shenai PM; Zhao Y
    Nanotechnology; 2012 Jan; 23(1):015702. PubMed ID: 22156240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy dissipation of high-speed nanobearings from double-walled carbon nanotubes.
    Zhu C; Guo W; Yu T
    Nanotechnology; 2008 Nov; 19(46):465703. PubMed ID: 21836258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of frictional force in carbon nanotube oscillators.
    Chen Y; Yang J; Wang X; Ni Z; Li D
    Nanotechnology; 2009 Jan; 20(3):035704. PubMed ID: 19417306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of carbon nanotube oscillators revisited.
    Zhao X; Cummings PT
    J Chem Phys; 2006 Apr; 124(13):134705. PubMed ID: 16613466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helicity and electron-correlation effects on transport properties of double-walled carbon nanotubes.
    Wang S; Grifoni M
    Phys Rev Lett; 2005 Dec; 95(26):266802. PubMed ID: 16486383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes.
    Guo W; Guo Y; Gao H; Zheng Q; Zhong W
    Phys Rev Lett; 2003 Sep; 91(12):125501. PubMed ID: 14525370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers.
    Zhang X; Li Q
    ACS Nano; 2010 Jan; 4(1):312-6. PubMed ID: 20020757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal-induced edge barriers and forces in interlayer interaction of concentric carbon nanotubes.
    Guo Z; Chang T; Guo X; Gao H
    Phys Rev Lett; 2011 Sep; 107(10):105502. PubMed ID: 21981509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes.
    Lebedeva IV; Knizhnik AA; Popov AM; Lozovik YE; Potapkin BV
    Nanotechnology; 2009 Mar; 20(10):105202. PubMed ID: 19417512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phononic Origins of Friction in Carbon Nanotube Oscillators.
    Prasad MV; Bhattacharya B
    Nano Lett; 2017 Apr; 17(4):2131-2137. PubMed ID: 28234012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale study of high performance double-walled nanotube-polymer fibers.
    Naraghi M; Filleter T; Moravsky A; Locascio M; Loutfy RO; Espinosa HD
    ACS Nano; 2010 Nov; 4(11):6463-76. PubMed ID: 20977259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the commensurability and disorder on friction for the system Xe/Cu.
    Franchini A; Bortolani V; Santoro G; Xheka K
    J Phys Condens Matter; 2011 Dec; 23(48):484004. PubMed ID: 22085886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic sliding friction between concentric carbon nanotubes.
    Tangney P; Louie SG; Cohen ML
    Phys Rev Lett; 2004 Aug; 93(6):065503. PubMed ID: 15323643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal effect on DWCNTs as rotational bearings.
    Zhu BE; Pan ZY; Wang YX; Xiao Y
    Nanotechnology; 2008 Dec; 19(49):495708. PubMed ID: 21730688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coaxial nanocables of codoped double-walled carbon nanotubes.
    Yang Y; Yan XH; Lu D; Cao JX
    J Chem Phys; 2009 Dec; 131(21):214701. PubMed ID: 19968354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal-gradient-induced interaction energy ramp and actuation of relative axial motion in short-sleeved double-walled carbon nanotubes.
    Shenai PM; Xu Z; Zhao Y
    Nanotechnology; 2011 Dec; 22(48):485702. PubMed ID: 22056730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oscillatory damped behaviour of incommensurate double-walled carbon nanotubes.
    Rivera JL; McCabe C; Cummings PT
    Nanotechnology; 2005 Feb; 16(2):186-98. PubMed ID: 21727422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy exchanges in carbon nanotube oscillators.
    Zhao Y; Ma CC; Wong LH; Chen G; Xu Z; Zheng Q; Jiang Q; Chwang AT
    Nanotechnology; 2006 Feb; 17(4):1032-5. PubMed ID: 21727377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AFM imaging of functionalized double-walled carbon nanotubes.
    Lamprecht C; Danzberger J; Lukanov P; Tîlmaciu CM; Galibert AM; Soula B; Flahaut E; Gruber HJ; Hinterdorfer P; Ebner A; Kienberger F
    Ultramicroscopy; 2009 Jul; 109(8):899-906. PubMed ID: 19375857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth mechanism of single-walled carbon nanotube from catalytic reaction inside carbon nanotube template.
    Izu Y; Shiomi J; Takagi Y; Okada S; Maruyama S
    ACS Nano; 2010 Aug; 4(8):4769-75. PubMed ID: 20731452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.