BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22156240)

  • 1. Investigation of the effects of commensurability on friction between concentric carbon nanotubes.
    Zhu C; Shenai PM; Zhao Y
    Nanotechnology; 2012 Jan; 23(1):015702. PubMed ID: 22156240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy dissipation of high-speed nanobearings from double-walled carbon nanotubes.
    Zhu C; Guo W; Yu T
    Nanotechnology; 2008 Nov; 19(46):465703. PubMed ID: 21836258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of frictional force in carbon nanotube oscillators.
    Chen Y; Yang J; Wang X; Ni Z; Li D
    Nanotechnology; 2009 Jan; 20(3):035704. PubMed ID: 19417306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of carbon nanotube oscillators revisited.
    Zhao X; Cummings PT
    J Chem Phys; 2006 Apr; 124(13):134705. PubMed ID: 16613466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helicity and electron-correlation effects on transport properties of double-walled carbon nanotubes.
    Wang S; Grifoni M
    Phys Rev Lett; 2005 Dec; 95(26):266802. PubMed ID: 16486383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes.
    Guo W; Guo Y; Gao H; Zheng Q; Zhong W
    Phys Rev Lett; 2003 Sep; 91(12):125501. PubMed ID: 14525370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers.
    Zhang X; Li Q
    ACS Nano; 2010 Jan; 4(1):312-6. PubMed ID: 20020757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal-induced edge barriers and forces in interlayer interaction of concentric carbon nanotubes.
    Guo Z; Chang T; Guo X; Gao H
    Phys Rev Lett; 2011 Sep; 107(10):105502. PubMed ID: 21981509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes.
    Lebedeva IV; Knizhnik AA; Popov AM; Lozovik YE; Potapkin BV
    Nanotechnology; 2009 Mar; 20(10):105202. PubMed ID: 19417512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phononic Origins of Friction in Carbon Nanotube Oscillators.
    Prasad MV; Bhattacharya B
    Nano Lett; 2017 Apr; 17(4):2131-2137. PubMed ID: 28234012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale study of high performance double-walled nanotube-polymer fibers.
    Naraghi M; Filleter T; Moravsky A; Locascio M; Loutfy RO; Espinosa HD
    ACS Nano; 2010 Nov; 4(11):6463-76. PubMed ID: 20977259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the commensurability and disorder on friction for the system Xe/Cu.
    Franchini A; Bortolani V; Santoro G; Xheka K
    J Phys Condens Matter; 2011 Dec; 23(48):484004. PubMed ID: 22085886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic sliding friction between concentric carbon nanotubes.
    Tangney P; Louie SG; Cohen ML
    Phys Rev Lett; 2004 Aug; 93(6):065503. PubMed ID: 15323643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal effect on DWCNTs as rotational bearings.
    Zhu BE; Pan ZY; Wang YX; Xiao Y
    Nanotechnology; 2008 Dec; 19(49):495708. PubMed ID: 21730688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coaxial nanocables of codoped double-walled carbon nanotubes.
    Yang Y; Yan XH; Lu D; Cao JX
    J Chem Phys; 2009 Dec; 131(21):214701. PubMed ID: 19968354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal-gradient-induced interaction energy ramp and actuation of relative axial motion in short-sleeved double-walled carbon nanotubes.
    Shenai PM; Xu Z; Zhao Y
    Nanotechnology; 2011 Dec; 22(48):485702. PubMed ID: 22056730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oscillatory damped behaviour of incommensurate double-walled carbon nanotubes.
    Rivera JL; McCabe C; Cummings PT
    Nanotechnology; 2005 Feb; 16(2):186-98. PubMed ID: 21727422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy exchanges in carbon nanotube oscillators.
    Zhao Y; Ma CC; Wong LH; Chen G; Xu Z; Zheng Q; Jiang Q; Chwang AT
    Nanotechnology; 2006 Feb; 17(4):1032-5. PubMed ID: 21727377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AFM imaging of functionalized double-walled carbon nanotubes.
    Lamprecht C; Danzberger J; Lukanov P; Tîlmaciu CM; Galibert AM; Soula B; Flahaut E; Gruber HJ; Hinterdorfer P; Ebner A; Kienberger F
    Ultramicroscopy; 2009 Jul; 109(8):899-906. PubMed ID: 19375857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth mechanism of single-walled carbon nanotube from catalytic reaction inside carbon nanotube template.
    Izu Y; Shiomi J; Takagi Y; Okada S; Maruyama S
    ACS Nano; 2010 Aug; 4(8):4769-75. PubMed ID: 20731452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.