These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 22156372)

  • 1. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures.
    Kim DN; Kilchherr F; Dietz H; Bathe M
    Nucleic Acids Res; 2012 Apr; 40(7):2862-8. PubMed ID: 22156372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireframe and tensegrity DNA nanostructures.
    Simmel SS; Nickels PC; Liedl T
    Acc Chem Res; 2014 Jun; 47(6):1691-9. PubMed ID: 24720250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Design Choices on the Stiffness of Wireframe DNA Origami Structures.
    Benson E; Mohammed A; Rayneau-Kirkhope D; Gådin A; Orponen P; Högberg B
    ACS Nano; 2018 Sep; 12(9):9291-9299. PubMed ID: 30188123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymorphic design of DNA origami structures through mechanical control of modular components.
    Lee C; Lee JY; Kim DN
    Nat Commun; 2017 Dec; 8(1):2067. PubMed ID: 29233997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the Mechanical Stiffness of DNA Nanostructures Using Engineered Defects.
    Lee C; Kim KS; Kim YJ; Lee JY; Kim DN
    ACS Nano; 2019 Jul; 13(7):8329-8336. PubMed ID: 31291091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based model for light-harvesting properties of nucleic acid nanostructures.
    Pan K; Boulais E; Yang L; Bathe M
    Nucleic Acids Res; 2014 Feb; 42(4):2159-70. PubMed ID: 24311563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-Aided Design of A-Trail Routed Wireframe DNA Nanostructures with Square Lattice Edges.
    Lolaico M; Blokhuizen S; Shen B; Wang Y; Högberg B
    ACS Nano; 2023 Apr; 17(7):6565-6574. PubMed ID: 36951760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.
    Agarwal NP; Matthies M; Joffroy B; Schmidt TL
    ACS Nano; 2018 Mar; 12(3):2546-2553. PubMed ID: 29451771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhombic-Shaped Nanostructures and Mechanical Properties of 2D DNA Origami Constructed with Different Crossover/Nick Designs.
    Ma Z; Huang Y; Park S; Kawai K; Kim DN; Hirai Y; Tsuchiya T; Yamada H; Tabata O
    Small; 2018 Jan; 14(1):. PubMed ID: 29131541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Framework DNA Origami with Layered Crossovers.
    Hong F; Jiang S; Wang T; Liu Y; Yan H
    Angew Chem Int Ed Engl; 2016 Oct; 55(41):12832-5. PubMed ID: 27628457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex wireframe DNA origami nanostructures with multi-arm junction vertices.
    Zhang F; Jiang S; Wu S; Li Y; Mao C; Liu Y; Yan H
    Nat Nanotechnol; 2015 Sep; 10(9):779-84. PubMed ID: 26192207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomously designed free-form 2D DNA origami.
    Jun H; Zhang F; Shepherd T; Ratanalert S; Qi X; Yan H; Bathe M
    Sci Adv; 2019 Jan; 5(1):eaav0655. PubMed ID: 30613779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environment-Dependent Stability and Mechanical Properties of DNA Origami Six-Helix Bundles with Different Crossover Spacings.
    Xin Y; Piskunen P; Suma A; Li C; Ijäs H; Ojasalo S; Seitz I; Kostiainen MA; Grundmeier G; Linko V; Keller A
    Small; 2022 May; 18(18):e2107393. PubMed ID: 35363419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programming 2D Supramolecular Assemblies with Wireframe DNA Origami.
    Wang X; Jun H; Bathe M
    J Am Chem Soc; 2022 Mar; 144(10):4403-4409. PubMed ID: 35230115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex wireframe DNA nanostructures from simple building blocks.
    Wang W; Chen S; An B; Huang K; Bai T; Xu M; Bellot G; Ke Y; Xiang Y; Wei B
    Nat Commun; 2019 Mar; 10(1):1067. PubMed ID: 30842408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenita: interactive 3D modelling and visualization of DNA nanostructures.
    de Llano E; Miao H; Ahmadi Y; Wilson AJ; Beeby M; Viola I; Barisic I
    Nucleic Acids Res; 2020 Sep; 48(15):8269-8275. PubMed ID: 32692355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA origami compliant nanostructures with tunable mechanical properties.
    Zhou L; Marras AE; Su HJ; Castro CE
    ACS Nano; 2014 Jan; 8(1):27-34. PubMed ID: 24351090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the sequence-dependent mechanical properties of DNA nicks for applications in twisted DNA nanostructure design.
    Lee JY; Kim YJ; Lee C; Lee JG; Yagyu H; Tabata O; Kim DN
    Nucleic Acids Res; 2019 Jan; 47(1):93-102. PubMed ID: 30476210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Center backbone-rigidified DNA polygonal nanostructures and bottom face-templated polyhedral pyramids with structural stability in a complex biological medium.
    Wang W; Chen Y; Yin H; Lv J; Lin M; Wu ZS
    Acta Biomater; 2023 Apr; 161():100-111. PubMed ID: 36905953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami.
    Jun H; Wang X; Parsons MF; Bricker WP; John T; Li S; Jackson S; Chiu W; Bathe M
    Nucleic Acids Res; 2021 Oct; 49(18):10265-10274. PubMed ID: 34508356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.