These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22156731)

  • 1. The complexity and implications of yeast prion domains.
    Du Z
    Prion; 2011; 5(4):311-6. PubMed ID: 22156731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of amino acid composition on yeast prion formation and prion domain interactions.
    Ross ED; Toombs JA
    Prion; 2010; 4(2):60-5. PubMed ID: 20495349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the prion propensity of glutamine/asparagine-rich proteins.
    Paul KR; Ross ED
    Prion; 2015; 9(5):347-54. PubMed ID: 26555096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast.
    Taneja V; Maddelein ML; Talarek N; Saupe SJ; Liebman SW
    Mol Cell; 2007 Jul; 27(1):67-77. PubMed ID: 17612491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A brief overview of the Swi1 prion-[SWI+].
    Goncharoff DK; Du Z; Li L
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29905794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compositional determinants of prion formation in yeast.
    Toombs JA; McCarty BR; Ross ED
    Mol Cell Biol; 2010 Jan; 30(1):319-32. PubMed ID: 19884345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Small Critical Regions of Swi1 Conferring Prion Formation, Maintenance, and Transmission.
    Valtierra S; Du Z; Li L
    Mol Cell Biol; 2017 Oct; 37(20):. PubMed ID: 28716950
    [No Abstract]   [Full Text] [Related]  

  • 8. Short disordered protein segment regulates cross-species transmission of a yeast prion.
    Shida T; Kamatari YO; Yoda T; Yamaguchi Y; Feig M; Ohhashi Y; Sugita Y; Kuwata K; Tanaka M
    Nat Chem Biol; 2020 Jul; 16(7):756-765. PubMed ID: 32284601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sensitive [SWI (+)] prion: new perspectives on yeast prion diversity.
    Hines JK; Craig EA
    Prion; 2011; 5(3):164-8. PubMed ID: 21811098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [New aspects of research upon the yeast Saccharomyces cerevisiae [PSI+] prion].
    Ishikawa T
    Postepy Biochem; 2007; 53(2):182-7. PubMed ID: 17969880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins.
    Halfmann R; Alberti S; Krishnan R; Lyle N; O'Donnell CW; King OD; Berger B; Pappu RV; Lindquist S
    Mol Cell; 2011 Jul; 43(1):72-84. PubMed ID: 21726811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of the asparagine- and glutamine-rich yeast prions into protein fibrils.
    Bousset L; Savistchenko J; Melki R
    Curr Alzheimer Res; 2008 Jun; 5(3):251-9. PubMed ID: 18537542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.
    Liu S; Hossinger A; Hofmann JP; Denner P; Vorberg IM
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibril-induced glutamine-/asparagine-rich prions recruit stress granule proteins in mammalian cells.
    Riemschoss K; Arndt V; Bolognesi B; von Eisenhart-Rothe P; Liu S; Buravlova O; Duernberger Y; Paulsen L; Hornberger A; Hossinger A; Lorenzo-Gotor N; Hogl S; Müller SA; Tartaglia G; Lichtenthaler SF; Vorberg IM
    Life Sci Alliance; 2019 Aug; 2(4):. PubMed ID: 31266883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of polyglutamine toxicity by the yeast Sup35 prion domain in Drosophila.
    Li LB; Xu K; Bonini NM
    J Biol Chem; 2007 Dec; 282(52):37694-701. PubMed ID: 17956866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast prions and human prion-like proteins: sequence features and prediction methods.
    Cascarina SM; Ross ED
    Cell Mol Life Sci; 2014 Jun; 71(11):2047-63. PubMed ID: 24390581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domains.
    Jiang Y; Li H; Zhu L; Zhou JM; Perrett S
    J Biol Chem; 2004 Jan; 279(5):3361-9. PubMed ID: 14610069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains.
    Shattuck JE; Waechter AC; Ross ED
    Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Glutamine/Asparagine-Rich Fragment of Gln3, but not the Full-Length Protein, Aggregates in Saccharomyces cerevisiae.
    Antonets KS; Sargsyan HM; Nizhnikov AA
    Biochemistry (Mosc); 2016 Apr; 81(4):407-13. PubMed ID: 27293098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.