These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 22157002)

  • 61. Structure and organization of chromatin fiber in the nucleus.
    Li G; Zhu P
    FEBS Lett; 2015 Oct; 589(20 Pt A):2893-904. PubMed ID: 25913782
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping.
    Risca VI; Denny SK; Straight AF; Greenleaf WJ
    Nature; 2017 Jan; 541(7636):237-241. PubMed ID: 28024297
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Allosteric Regulation of Chromatin-Modifying Enzymes.
    Kim JA; Kwon M; Kim J
    Biochemistry; 2019 Jan; 58(1):15-23. PubMed ID: 30335997
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nucleosome and chromatin fiber dynamics.
    Luger K; Hansen JC
    Curr Opin Struct Biol; 2005 Apr; 15(2):188-96. PubMed ID: 15837178
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Linker histone-dependent organization and dynamics of nucleosome entry/exit DNAs.
    Sivolob A; Prunell A
    J Mol Biol; 2003 Aug; 331(5):1025-40. PubMed ID: 12927539
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Chromatin structures condensed by linker histones.
    Zhou BR; Bai Y
    Essays Biochem; 2019 Apr; 63(1):75-87. PubMed ID: 31015384
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber.
    Kruithof M; Chien FT; Routh A; Logie C; Rhodes D; van Noort J
    Nat Struct Mol Biol; 2009 May; 16(5):534-40. PubMed ID: 19377481
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Force spectroscopy of chromatin fibers: extracting energetics and structural information from Monte Carlo simulations.
    Kepper N; Ettig R; Stehr R; Marnach S; Wedemann G; Rippe K
    Biopolymers; 2011 Jul; 95(7):435-47. PubMed ID: 21294108
    [TBL] [Abstract][Full Text] [Related]  

  • 69. DNA sequence-dependent contributions of core histone tails to nucleosome stability: differential effects of acetylation and proteolytic tail removal.
    Widlund HR; Vitolo JM; Thiriet C; Hayes JJ
    Biochemistry; 2000 Apr; 39(13):3835-41. PubMed ID: 10736184
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structures and Functions of Chromatin Fibers.
    Chen P; Li W; Li G
    Annu Rev Biophys; 2021 May; 50():95-116. PubMed ID: 33957053
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers.
    Meng H; Andresen K; van Noort J
    Nucleic Acids Res; 2015 Apr; 43(7):3578-90. PubMed ID: 25779043
    [TBL] [Abstract][Full Text] [Related]  

  • 72. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes.
    Buning R; Kropff W; Martens K; van Noort J
    J Phys Condens Matter; 2015 Feb; 27(6):064103. PubMed ID: 25564102
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Geometrical Heterogeneity Dominates Thermal Fluctuations in Facilitating Chromatin Contacts.
    Beltran B; Kannan D; MacPherson Q; Spakowitz AJ
    Phys Rev Lett; 2019 Nov; 123(20):208103. PubMed ID: 31809067
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Local geometry and elasticity in compact chromatin structure.
    Koslover EF; Fuller CJ; Straight AF; Spakowitz AJ
    Biophys J; 2010 Dec; 99(12):3941-50. PubMed ID: 21156136
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.
    White AE; Hieb AR; Luger K
    Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Forced unraveling of chromatin fibers with nonuniform linker DNA lengths.
    Ozer G; Collepardo-Guevara R; Schlick T
    J Phys Condens Matter; 2015 Feb; 27(6):064113. PubMed ID: 25564319
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Linker histone defines structure and self-association behaviour of the 177 bp human chromatosome.
    Wang S; Vogirala VK; Soman A; Berezhnoy NV; Liu ZB; Wong ASW; Korolev N; Su CJ; Sandin S; Nordenskiöld L
    Sci Rep; 2021 Jan; 11(1):380. PubMed ID: 33432055
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation.
    Garcia-Saez I; Menoni H; Boopathi R; Shukla MS; Soueidan L; Noirclerc-Savoye M; Le Roy A; Skoufias DA; Bednar J; Hamiche A; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2018 Dec; 72(5):902-915.e7. PubMed ID: 30392928
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.
    Grigoryev SA; Bascom G; Buckwalter JM; Schubert MB; Woodcock CL; Schlick T
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1238-43. PubMed ID: 26787893
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nucleosome conformational flexibility and implications for chromatin dynamics.
    Sivolob A; Prunell A
    Philos Trans A Math Phys Eng Sci; 2004 Jul; 362(1820):1519-47. PubMed ID: 15306464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.