These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22157307)

  • 1. Commentary: Weighing up the dead and missing: reflections on inverse-probability weighting and principal stratification to address truncation by death.
    Chaix B; Evans D; Merlo J; Suzuki E
    Epidemiology; 2012 Jan; 23(1):129-31; discussion 132-7. PubMed ID: 22157307
    [No Abstract]   [Full Text] [Related]  

  • 2. Accounting for bias due to selective attrition: the example of smoking and cognitive decline.
    Weuve J; Tchetgen Tchetgen EJ; Glymour MM; Beck TL; Aggarwal NT; Wilson RS; Evans DA; Mendes de Leon CF
    Epidemiology; 2012 Jan; 23(1):119-28. PubMed ID: 21989136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal drop-out and weighting against its bias.
    Schmidt SCE; Woll A
    BMC Med Res Methodol; 2017 Dec; 17(1):164. PubMed ID: 29221434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictors of follow-up and assessment of selection bias from dropouts using inverse probability weighting in a cohort of university graduates.
    Alonso A; Seguí-Gómez M; de Irala J; Sánchez-Villegas A; Beunza JJ; Martínez-Gonzalez MA
    Eur J Epidemiol; 2006; 21(5):351-8. PubMed ID: 16736275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principal stratification designs to estimate input data missing due to death.
    Frangakis CE; Rubin DB; An MW; MacKenzie E
    Biometrics; 2007 Sep; 63(3):641-9; discussion 650-62. PubMed ID: 17824995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specifying the correlation structure in inverse-probability- weighting estimation for repeated measures.
    Tchetgen Tchetgen EJ; Glymour MM; Weuve J; Robins J
    Epidemiology; 2012 Jul; 23(4):644-6. PubMed ID: 22659551
    [No Abstract]   [Full Text] [Related]  

  • 7. Attrition Bias Related to Missing Outcome Data: A Longitudinal Simulation Study.
    Lewin A; Brondeel R; Benmarhnia T; Thomas F; Chaix B
    Epidemiology; 2018 Jan; 29(1):87-95. PubMed ID: 28926372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Commentary: Maternal smoking during pregnancy: hazard for what?
    Breslau N
    Int J Epidemiol; 2007 Aug; 36(4):832-3. PubMed ID: 17599920
    [No Abstract]   [Full Text] [Related]  

  • 9. Response to commentary: maternal smoking during pregnancy hazard for what?
    Julvez J; Sunyer J
    Int J Epidemiol; 2007 Oct; 36(5):1151. PubMed ID: 17846052
    [No Abstract]   [Full Text] [Related]  

  • 10. Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation.
    Cook RJ; Zeng L; Yi GY
    Biometrics; 2004 Sep; 60(3):820-8. PubMed ID: 15339307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection Bias Due to Loss to Follow Up in Cohort Studies.
    Howe CJ; Cole SR; Lau B; Napravnik S; Eron JJ
    Epidemiology; 2016 Jan; 27(1):91-7. PubMed ID: 26484424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of longitudinal binary data with missing data due to dropouts.
    Ali MW; Talukder E
    J Biopharm Stat; 2005; 15(6):993-1007. PubMed ID: 16279357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GRADE guidelines 17: assessing the risk of bias associated with missing participant outcome data in a body of evidence.
    Guyatt GH; Ebrahim S; Alonso-Coello P; Johnston BC; Mathioudakis AG; Briel M; Mustafa RA; Sun X; Walter SD; Heels-Ansdell D; Neumann I; Kahale LA; Iorio A; Meerpohl J; Schünemann HJ; Akl EA
    J Clin Epidemiol; 2017 Jul; 87():14-22. PubMed ID: 28529188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistics commentary series: commentary #3--last observation carried forward.
    Streiner DL
    J Clin Psychopharmacol; 2014 Aug; 34(4):423-5. PubMed ID: 24911436
    [No Abstract]   [Full Text] [Related]  

  • 15. The missing data problem in meta-analyses.
    Rief W; Hofmann SG
    Arch Gen Psychiatry; 2008 Feb; 65(2):238. PubMed ID: 18250263
    [No Abstract]   [Full Text] [Related]  

  • 16. A two-stage analysis of repeated measurements with dropouts and/or intermittent missing data.
    Overall JE; Tonidandel S
    J Clin Psychol; 2006 Mar; 62(3):285-91. PubMed ID: 16299743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating bias from loss to follow-up in the Danish National Birth Cohort.
    Greene N; Greenland S; Olsen J; Nohr EA
    Epidemiology; 2011 Nov; 22(6):815-22. PubMed ID: 21918455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thinking while balancing: what to do about replacing dropouts.
    Shader RI; Harmatz JS; Greenblatt DJ
    J Clin Psychopharmacol; 1994 Aug; 14(4):229. PubMed ID: 7962677
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparisons of methods for analysis of repeated binary responses with missing data.
    Frank Liu G; Zhan X
    J Biopharm Stat; 2011 May; 21(3):371-92. PubMed ID: 21442514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of longitudinal studies with death and drop-out: a case study.
    Dufouil C; Brayne C; Clayton D
    Stat Med; 2004 Jul; 23(14):2215-26. PubMed ID: 15236426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.