BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22157573)

  • 1. Changes of chloride channels in the lacrimal glands of a rabbit model of Sjögren syndrome.
    Nandoskar P; Wang Y; Wei R; Liu Y; Zhao P; Lu M; Huang J; Thomas P; Trousdale MD; Ding C
    Cornea; 2012 Mar; 31(3):273-9. PubMed ID: 22157573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of aquaporins in the lacrimal glands of a rabbit model of Sjögren's syndrome.
    Ding C; Nandoskar P; Lu M; Thomas P; Trousdale MD; Wang Y
    Curr Eye Res; 2011 Jun; 36(6):571-8. PubMed ID: 21524183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)/K(+)-ATPase in the lacrimal glands of rabbits and its changes during induced autoimmune dacryoadenitis.
    Ding C; Lu M; Huang J
    Mol Vis; 2011; 17():2368-79. PubMed ID: 21921989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ENaC in the Rabbit Lacrimal Gland and its Changes During Sjögren Syndrome and Pregnancy.
    Wang M; Huang J; Lu M; Zhang S; Ding C
    Eye Contact Lens; 2015 Sep; 41(5):297-303. PubMed ID: 25828511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression in rat lacrimal gland duct cells collected using laser capture microdissection: evidence for K+ secretion by duct cells.
    Ubels JL; Hoffman HM; Srikanth S; Resau JH; Webb CP
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):1876-85. PubMed ID: 16638994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFTR-mediated Cl(-) transport in the acinar and duct cells of rabbit lacrimal gland.
    Lu M; Ding C
    Curr Eye Res; 2012 Aug; 37(8):671-7. PubMed ID: 22578307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of CFTR Activity in Ducts Rescues Acinar Cell Function and Reduces Inflammation in Pancreatic and Salivary Glands of Mice.
    Zeng M; Szymczak M; Ahuja M; Zheng C; Yin H; Swaim W; Chiorini JA; Bridges RJ; Muallem S
    Gastroenterology; 2017 Oct; 153(4):1148-1159. PubMed ID: 28634110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of the ocular surface and aquaporins in the lacrimal glands of rabbits during pregnancy.
    Ding C; Lu M; Huang J
    Mol Vis; 2011; 17():2847-55. PubMed ID: 22128232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine.
    Jakab RL; Collaco AM; Ameen NA
    Am J Physiol Gastrointest Liver Physiol; 2011 Jan; 300(1):G82-98. PubMed ID: 21030607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duct system of the rabbit lacrimal gland: structural characteristics and role in lacrimal secretion.
    Ding C; Parsa L; Nandoskar P; Zhao P; Wu K; Wang Y
    Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):2960-7. PubMed ID: 20107177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor necrosis factor inhibitor gene expression suppresses lacrimal gland immunopathology in a rabbit model of autoimmune dacryoadenitis.
    Zhu Z; Stevenson D; Schechter JE; Mircheff AK; Crow RW; Atkinson R; Ritter T; Bose S; Trousdale MD
    Cornea; 2003 May; 22(4):343-51. PubMed ID: 12792478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and regulation of the Na+-K+-2Cl- cotransporter NKCC1 in the normal and CFTR-deficient murine colon.
    Bachmann O; Wüchner K; Rossmann H; Leipziger J; Osikowska B; Colledge WH; Ratcliff R; Evans MJ; Gregor M; Seidler U
    J Physiol; 2003 Jun; 549(Pt 2):525-36. PubMed ID: 12692180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased expression of cathepsins and obesity-induced proinflammatory cytokines in lacrimal glands of male NOD mouse.
    Li X; Wu K; Edman M; Schenke-Layland K; MacVeigh-Aloni M; Janga SR; Schulz B; Hamm-Alvarez SF
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5019-29. PubMed ID: 20463324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of Ca2+-stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells.
    Lee RJ; Foskett JK
    Am J Physiol Lung Cell Mol Physiol; 2010 Feb; 298(2):L210-31. PubMed ID: 19965983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross talk of cAMP and flavone in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and Na+/K+/2Cl- cotransporter in renal epithelial A6 cells.
    Niisato N; Nishino H; Nishio K; Marunaka Y
    Biochem Pharmacol; 2004 Feb; 67(4):795-801. PubMed ID: 14757180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of salinity on the localization of Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis).
    McCormick SD; Sundell K; Björnsson BT; Brown CL; Hiroi J
    J Exp Biol; 2003 Dec; 206(Pt 24):4575-83. PubMed ID: 14610041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFTR upregulates the expression of the basolateral Na(+)-K(+)-2Cl(-) cotransporter in cultured pancreatic duct cells.
    Shumaker H; Soleimani M
    Am J Physiol; 1999 Dec; 277(6):C1100-10. PubMed ID: 10600761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na(+)/K(+)-ATPase expression changes in the rabbit lacrimal glands during pregnancy.
    Huang J; Lu M; Ding C
    Curr Eye Res; 2013 Jan; 38(1):18-26. PubMed ID: 23009595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lacrimal histopathology and ocular surface disease in a rabbit model of autoimmune dacryoadenitis.
    Zhu Z; Stevenson D; Schechter JE; Mircheff AK; Atkinson R; Trousdale MD
    Cornea; 2003 Jan; 22(1):25-32. PubMed ID: 12502944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basolateral chloride transporters in autosomal dominant polycystic kidney disease.
    Lebeau C; Hanaoka K; Moore-Hoon ML; Guggino WB; Beauwens R; Devuyst O
    Pflugers Arch; 2002 Sep; 444(6):722-31. PubMed ID: 12355171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.