These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22157771)

  • 1. New horizons in sensor development.
    Intille SS; Lester J; Sallis JF; Duncan G
    Med Sci Sports Exerc; 2012 Jan; 44(1 Suppl 1):S24-31. PubMed ID: 22157771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration and validation of wearable monitors.
    Bassett DR; Rowlands A; Trost SG
    Med Sci Sports Exerc; 2012 Jan; 44(1 Suppl 1):S32-8. PubMed ID: 22157772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field.
    Freedson P; Bowles HR; Troiano R; Haskell W
    Med Sci Sports Exerc; 2012 Jan; 44(1 Suppl 1):S1-4. PubMed ID: 22157769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing physical activity using wearable monitors: measures of physical activity.
    Butte NF; Ekelund U; Westerterp KR
    Med Sci Sports Exerc; 2012 Jan; 44(1 Suppl 1):S5-12. PubMed ID: 22157774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of accelerometry-based wearable motion detectors for physical activity monitoring.
    Yang CC; Hsu YL
    Sensors (Basel); 2010; 10(8):7772-88. PubMed ID: 22163626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Which indicators for measuring the daily physical activity? An overview on the challenges and technology limits for Telehealth applications.
    Tagliente I; Solvoll T; Trieste L; De Cecco CN; Murgia F; Bella S
    Technol Health Care; 2016 Sep; 24(5):665-72. PubMed ID: 27198463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study.
    Ferguson T; Rowlands AV; Olds T; Maher C
    Int J Behav Nutr Phys Act; 2015 Mar; 12():42. PubMed ID: 25890168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical activity and human energy expenditure.
    Westerterp KR; Plasqui G
    Curr Opin Clin Nutr Metab Care; 2004 Nov; 7(6):607-13. PubMed ID: 15534427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.
    Chowdhury EA; Western MJ; Nightingale TE; Peacock OJ; Thompson D
    PLoS One; 2017; 12(2):e0171720. PubMed ID: 28234979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A smartphone-driven methodology for estimating physical activities and energy expenditure in free living conditions.
    Guidoux R; Duclos M; Fleury G; Lacomme P; Lamaudière N; Manenq PH; Paris L; Ren L; Rousset S
    J Biomed Inform; 2014 Dec; 52():271-8. PubMed ID: 25048352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review.
    Jeran S; Steinbrecher A; Pischon T
    Int J Obes (Lond); 2016 Aug; 40(8):1187-97. PubMed ID: 27163747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-living energy expenditure in children using multi-sensor activity monitors.
    Arvidsson D; Slinde F; Hulthén L
    Clin Nutr; 2009 Jun; 28(3):305-12. PubMed ID: 19345453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A survey of online activity recognition using mobile phones.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2015 Jan; 15(1):2059-85. PubMed ID: 25608213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New concepts and technologies in home care and ambulatory monitoring.
    Dittmar A; Axisa F; Delhomme G; Gehin C
    Stud Health Technol Inform; 2004; 108():9-35. PubMed ID: 15718626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System.
    Hiremath SV; Intille SS; Kelleher A; Cooper RA; Ding D
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1146-1153.e1. PubMed ID: 26976800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Objective measurement of physical activity in youth: current issues, future directions.
    Trost SG
    Exerc Sport Sci Rev; 2001; 29(1):32-6. PubMed ID: 11210445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wrist-Worn Activity Trackers in Laboratory and Free-Living Settings for Patients With Chronic Pain: Criterion Validity Study.
    Sjöberg V; Westergren J; Monnier A; Lo Martire R; Hagströmer M; Äng BO; Vixner L
    JMIR Mhealth Uhealth; 2021 Jan; 9(1):e24806. PubMed ID: 33433391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of physical activity measurement using accelerometers in older adults: considerations for research design and conduct.
    Murphy SL
    Prev Med; 2009 Feb; 48(2):108-14. PubMed ID: 19111780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.