These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22157812)

  • 41. Effects of asymmetric superior laryngeal nerve stimulation on glottic posture, acoustics, vibration.
    Chhetri DK; Neubauer J; Bergeron JL; Sofer E; Peng KA; Jamal N
    Laryngoscope; 2013 Dec; 123(12):3110-6. PubMed ID: 23712542
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of subglottal acoustics on laboratory models of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Sep; 120(3):1558-69. PubMed ID: 17004478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Imaging and Analysis of Human Vocal Fold Vibration Using Two-Dimensional (2D) Scanning Videokymography.
    Park HJ; Cha W; Kim GH; Jeon GR; Lee BJ; Shin BJ; Choi YG; Wang SG
    J Voice; 2016 May; 30(3):345-53. PubMed ID: 26239969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of level difference between left and right vocal folds on phonation: Physical experiment and theoretical study.
    Tokuda IT; Shimamura R
    J Acoust Soc Am; 2017 Aug; 142(2):482. PubMed ID: 28863607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx.
    Xue Q; Mittal R; Zheng X; Bielamowicz S
    J Acoust Soc Am; 2012 Sep; 132(3):1602-13. PubMed ID: 22978889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2014 Mar; 135(3):1480-90. PubMed ID: 24606284
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Influence of Fiber Orientation of the Conus Elasticus in Vocal Fold Modeling.
    Wang X; Zheng X; Xue Q
    J Biomech Eng; 2023 Sep; 145(9):. PubMed ID: 37216309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensional biomechanical properties of human vocal folds: parameter optimization of a numerical model to match in vitro dynamics.
    Yang A; Berry DA; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2012 Feb; 131(2):1378-90. PubMed ID: 22352511
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models.
    Pickup BA; Thomson SL
    J Acoust Soc Am; 2010 Sep; 128(3):EL124-9. PubMed ID: 20815428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimation of vocal fold physiology from voice acoustics using machine learning.
    Zhang Z
    J Acoust Soc Am; 2020 Mar; 147(3):EL264. PubMed ID: 32237804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A rat excised larynx model of vocal fold scar.
    Welham NV; Montequin DW; Tateya I; Tateya T; Choi SH; Bless DM
    J Speech Lang Hear Res; 2009 Aug; 52(4):1008-20. PubMed ID: 19641079
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [High speed cinematographic analysis of subglottal mucosal vibration during experimentally induced phonation in excised larynges].
    Kurokawa H
    Nihon Jibiinkoka Gakkai Kaiho; 1992 Aug; 95(8):1151-63. PubMed ID: 1403309
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical characterization of vocal fold tissue: a review study.
    Miri AK
    J Voice; 2014 Nov; 28(6):657-67. PubMed ID: 25008382
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An automatic method to quantify mucosal waves via videokymography.
    Jiang JJ; Zhang Y; Kelly MP; Bieging ET; Hoffman MR
    Laryngoscope; 2008 Aug; 118(8):1504-10. PubMed ID: 18545215
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
    Jones CL; Achuthan A; Erath BD
    J Acoust Soc Am; 2015 Feb; 137(2):EL158-64. PubMed ID: 25698044
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new instrument for intraoperative assessment of individual vocal folds.
    Heaton JT; Kobler JB; Hillman RE; Zeitels SM
    Laryngoscope; 2005 Jul; 115(7):1223-9. PubMed ID: 15995511
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of phonatory characteristics using ex vivo rabbit larynges.
    Döllinger M; Kniesburges S; Berry DA; Birk V; Wendler O; Dürr S; Alexiou C; Schützenberger A
    J Acoust Soc Am; 2018 Jul; 144(1):142. PubMed ID: 30075689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.