These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 22157972)

  • 1. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits.
    Sparta DR; Stamatakis AM; Phillips JL; Hovelsø N; van Zessen R; Stuber GD
    Nat Protoc; 2011 Dec; 7(1):12-23. PubMed ID: 22157972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber-optic implantation for chronic optogenetic stimulation of brain tissue.
    Ung K; Arenkiel BR
    J Vis Exp; 2012 Oct; (68):e50004. PubMed ID: 23128465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo.
    Canales A; Jia X; Froriep UP; Koppes RA; Tringides CM; Selvidge J; Lu C; Hou C; Wei L; Fink Y; Anikeeva P
    Nat Biotechnol; 2015 Mar; 33(3):277-84. PubMed ID: 25599177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice.
    Doronina-Amitonova LV; Fedotov IV; Ivashkina OI; Zots MA; Fedotov AB; Anokhin KV; Zheltikov AM
    Sci Rep; 2013 Nov; 3():3265. PubMed ID: 24253232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fiber-optic imaging and manipulation of neural activity during animal behavior.
    Miyamoto D; Murayama M
    Neurosci Res; 2016 Feb; 103():1-9. PubMed ID: 26427958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.
    Aravanis AM; Wang LP; Zhang F; Meltzer LA; Mogri MZ; Schneider MB; Deisseroth K
    J Neural Eng; 2007 Sep; 4(3):S143-56. PubMed ID: 17873414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological recordings from the Drosophila giant fiber system (GFS).
    Allen MJ; Godenschwege TA
    Cold Spring Harb Protoc; 2010 Jul; 2010(7):pdb.prot5453. PubMed ID: 20647357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronically implanted hyperdrive for cortical recording and optogenetic control in behaving mice.
    Siegle JH; Carlen M; Meletis K; Tsai LH; Moore CI; Ritt J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7529-32. PubMed ID: 22256080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics.
    Pisanello F; Sileo L; Oldenburg IA; Pisanello M; Martiradonna L; Assad JA; Sabatini BL; De Vittorio M
    Neuron; 2014 Jun; 82(6):1245-54. PubMed ID: 24881834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique.
    Davey CJ; Argyros A; Fleming SC; Solomon SG
    Appl Opt; 2015 Dec; 54(34):10068-72. PubMed ID: 26836662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals.
    Cao Y; Pan S; Yan M; Sun C; Huang J; Zhong C; Wang L; Yi L
    BMC Biol; 2021 Nov; 19(1):252. PubMed ID: 34819062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fiber optic-based system for behavioral eyeblink measurement in a MRI environment.
    Miller MJ; Li L; Weiss C; Disterhoft JF; Wyrwicz AM
    J Neurosci Methods; 2005 Jan; 141(1):83-7. PubMed ID: 15585291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.
    Zhang F; Gradinaru V; Adamantidis AR; Durand R; Airan RD; de Lecea L; Deisseroth K
    Nat Protoc; 2010 Mar; 5(3):439-56. PubMed ID: 20203662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible biodegradable citrate-based polymeric step-index optical fiber.
    Shan D; Zhang C; Kalaba S; Mehta N; Kim GB; Liu Z; Yang J
    Biomaterials; 2017 Oct; 143():142-148. PubMed ID: 28802101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisite Electrophysiology Recordings in Mice to Study Cross-Regional Communication During Anxiety.
    Harris AZ; Golder D; Likhtik E
    Curr Protoc Neurosci; 2017 Jul; 80():8.40.1-8.40.21. PubMed ID: 28678397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2.
    Cardin JA; Carlén M; Meletis K; Knoblich U; Zhang F; Deisseroth K; Tsai LH; Moore CI
    Nat Protoc; 2010 Feb; 5(2):247-54. PubMed ID: 20134425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic neuromodulation.
    Henderson JM; Federici T; Boulis N
    Neurosurgery; 2009 May; 64(5):796-804; discussion 804. PubMed ID: 19404144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Optogenetic Modulation with Simultaneous Neural Detection Using Microelectrode Array Integrated with Optical Fiber.
    Fan P; Song Y; Xu S; Dai Y; Wang Y; Lu B; Xie J; Wang H; Cai X
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.