These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 22158950)

  • 1. Low absorption vitreous carbon reactors for operando XAS: a case study on Cu/Zeolites for selective catalytic reduction of NO(x) by NH3.
    Kispersky VF; Kropf AJ; Ribeiro FH; Miller JT
    Phys Chem Chem Phys; 2012 Feb; 14(7):2229-38. PubMed ID: 22158950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ XAS and IR studies on Cu:SAPO-5 and Cu:SAPO-11: the contributory role of monomeric linear copper(i) species in the selective catalytic reduction of NOx by propene.
    Mathisen K; Stockenhuber M; Nicholson DG
    Phys Chem Chem Phys; 2009 Jul; 11(26):5476-88. PubMed ID: 19551218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13.
    Paolucci C; Verma AA; Bates SA; Kispersky VF; Miller JT; Gounder R; Delgass WN; Ribeiro FH; Schneider WF
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11828-33. PubMed ID: 25220217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cu-CHA deNOx Catalyst in Action: Temperature-Dependent NH3-Assisted Selective Catalytic Reduction Monitored by Operando XAS and XES.
    Lomachenko KA; Borfecchia E; Negri C; Berlier G; Lamberti C; Beato P; Falsig H; Bordiga S
    J Am Chem Soc; 2016 Sep; 138(37):12025-8. PubMed ID: 27532483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective catalytic reduction of NO over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy.
    Boubnov A; Carvalho HW; Doronkin DE; Günter T; Gallo E; Atkins AJ; Jacob CR; Grunwaldt JD
    J Am Chem Soc; 2014 Sep; 136(37):13006-15. PubMed ID: 25105343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.
    Shi X; Liu F; Xie L; Shan W; He H
    Environ Sci Technol; 2013 Apr; 47(7):3293-8. PubMed ID: 23477804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Cu-SSZ-13 NH3 SCR catalysts: an in situ FTIR study.
    Szanyi J; Kwak JH; Zhu H; Peden CH
    Phys Chem Chem Phys; 2013 Feb; 15(7):2368-80. PubMed ID: 23301245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites.
    Paolucci C; Parekh AA; Khurana I; Di Iorio JR; Li H; Albarracin Caballero JD; Shih AJ; Anggara T; Delgass WN; Miller JT; Ribeiro FH; Gounder R; Schneider WF
    J Am Chem Soc; 2016 May; 138(18):6028-48. PubMed ID: 27070199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic identification and catalytic relevance of NH
    Rizzotto V; Chen D; Tabak BM; Yang JY; Ye D; Simon U; Chen P
    Chemosphere; 2020 Jul; 250():126272. PubMed ID: 32109703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The surface adsorption and selective catalytic reaction of NO on Cu-ZSM-5 using in situ DRIFTS].
    Zhang P; Wang LF; Chen YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun; 27(6):1102-5. PubMed ID: 17763767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of NH3 with Cu-SSZ-13 Catalyst: A Complementary FTIR, XANES, and XES Study.
    Giordanino F; Borfecchia E; Lomachenko KA; Lazzarini A; Agostini G; Gallo E; Soldatov AV; Beato P; Bordiga S; Lamberti C
    J Phys Chem Lett; 2014 May; 5(9):1552-9. PubMed ID: 26270095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ and operando study of catalysts during high-temperature high-pressure catalysis in a fixed-bed plug flow reactor with x-ray absorption spectroscopy.
    Tang Y; Nguyen L; Li Y; Tao F
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37255372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the NH
    Ye X; Oord R; Monai M; Schmidt JE; Chen T; Meirer F; Weckhuysen BM
    Catal Sci Technol; 2022 Apr; 12(8):2589-2603. PubMed ID: 35664830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.
    Highfield J; Liu T; Loo YS; Grushko B; Borgna A
    Phys Chem Chem Phys; 2009 Feb; 11(8):1196-208. PubMed ID: 19209363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ extended X-ray absorption fine structure study during selective alcohol oxidation over Pd/Al2O3 in supercritical carbon dioxide.
    Grunwaldt JD; Caravati M; Baiker A
    J Phys Chem B; 2006 May; 110(20):9916-22. PubMed ID: 16706447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Kinetics and
    Krishna SH; Jones CB; Miller JT; Ribeiro FH; Gounder R
    J Phys Chem Lett; 2020 Jul; 11(13):5029-5036. PubMed ID: 32496798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labile Cu(I) catalyst/spectator Cu(II) species in copper-catalyzed C-C coupling reaction: operando IR, in situ XANES/EXAFS evidence and kinetic investigations.
    He C; Zhang G; Ke J; Zhang H; Miller JT; Kropf AJ; Lei A
    J Am Chem Soc; 2013 Jan; 135(1):488-93. PubMed ID: 23214954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonia-Containing Species Formed in Cu-Chabazite As Per In Situ EPR, Solid-State NMR, and DFT Calculations.
    Moreno-González M; Hueso B; Boronat M; Blasco T; Corma A
    J Phys Chem Lett; 2015 Mar; 6(6):1011-7. PubMed ID: 26262861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in situ Al K-edge XAS investigation of the local environment of H+- and Cu+-exchanged USY and ZSM-5 zeolites.
    Drake IJ; Zhang Y; Gilles MK; Teris Liu CN; Nachimuthu P; Perera RC; Wakita H; Bell AT
    J Phys Chem B; 2006 Jun; 110(24):11665-76. PubMed ID: 16800461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C; Di Iorio JR; Schneider WF; Gounder R
    Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.