These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 22158950)
21. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy. Bansode A; Guilera G; Cuartero V; Simonelli L; Avila M; Urakawa A Rev Sci Instrum; 2014 Aug; 85(8):084105. PubMed ID: 25173285 [TBL] [Abstract][Full Text] [Related]
22. Optimizing the crystallinity and acidity of H-SAPO-34 by fluoride for synthesizing Cu/SAPO-34 NH3-SCR catalyst. Ma J; Si Z; Wu X; Weng D; Ma Y J Environ Sci (China); 2016 Mar; 41():244-251. PubMed ID: 26969071 [TBL] [Abstract][Full Text] [Related]
23. X-Ray absorption in homogeneous catalysis research: the iron-catalyzed Michael addition reaction by XAS, RIXS and multi-dimensional spectroscopy. Bauer M; Gastl C Phys Chem Chem Phys; 2010 Jun; 12(21):5575-84. PubMed ID: 20405080 [TBL] [Abstract][Full Text] [Related]
24. Spectroscopic IR, EPR, and operando DRIFT insights into surface reaction pathways of selective reduction of NO by propene over the Co-BEA zeolite. Pietrzyk P; Dujardin C; Góra-Marek K; Granger P; Sojka Z Phys Chem Chem Phys; 2012 Feb; 14(7):2203-15. PubMed ID: 22134498 [TBL] [Abstract][Full Text] [Related]
25. Operando Spectroscopic Studies of Cu-SSZ-13 for NH Greenaway AG; Lezcano-Gonzalez I; Agote-Aran M; Gibson EK; Odarchenko Y; Beale AM Top Catal; 2018; 61(3):175-182. PubMed ID: 30956504 [TBL] [Abstract][Full Text] [Related]
26. Low-temperature selective catalytic reduction of NO with propylene in excess oxygen over the Pt/ZSM-5 catalyst. Zhang Z; Chen M; Jiang Z; Shangguan W J Hazard Mater; 2011 Oct; 193():330-4. PubMed ID: 21824727 [TBL] [Abstract][Full Text] [Related]
27. Mechanistic Understanding of Cu-CHA Catalyst as Sensor for Direct NH Chen P; Rizzotto V; Khetan A; Xie K; Moos R; Pitsch H; Ye D; Simon U ACS Appl Mater Interfaces; 2019 Feb; 11(8):8097-8105. PubMed ID: 30706712 [TBL] [Abstract][Full Text] [Related]
28. Selective catalytic reduction of NO Shan Y; Du J; Zhang Y; Shan W; Shi X; Yu Y; Zhang R; Meng X; Xiao FS; He H Natl Sci Rev; 2021 Oct; 8(10):nwab010. PubMed ID: 34858603 [TBL] [Abstract][Full Text] [Related]
29. Operando X-ray absorption spectroscopy study of the Fischer-Tropsch reaction with a Co catalyst. Nayak C; Jain P; Vinod CP; Jha SN; Bhattacharyya D J Synchrotron Radiat; 2019 Jan; 26(Pt 1):137-144. PubMed ID: 30655478 [TBL] [Abstract][Full Text] [Related]
30. Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13. Günter T; Carvalho HW; Doronkin DE; Sheppard T; Glatzel P; Atkins AJ; Rudolph J; Jacob CR; Casapu M; Grunwaldt JD Chem Commun (Camb); 2015 Jun; 51(44):9227-30. PubMed ID: 25951966 [TBL] [Abstract][Full Text] [Related]
31. Mechanism of the oxidation-reduction of the MoVSbNbO catalyst: in operando X-ray absorption spectroscopy and electrical conductivity measurements. Safonova OV; Deniau B; Millet JM J Phys Chem B; 2006 Nov; 110(47):23962-7. PubMed ID: 17125364 [TBL] [Abstract][Full Text] [Related]
32. Dual reactor for in situ/operando fluorescent mode XAS studies of sample containing low-concentration 3d or 5d metal elements. Nguyen L; Tang Y; Li Y; Zhang X; Wang D; Tao FF Rev Sci Instrum; 2018 May; 89(5):054103. PubMed ID: 29864830 [TBL] [Abstract][Full Text] [Related]
33. Controlled synthesis of Cu-based SAPO-18/34 intergrowth zeolites for selective catalytic reduction of NO Zhang S; Ming S; Guo L; Bian C; Meng Y; Liu Q; Dong Y; Bi J; Li D; Wu Q; Qin K; Chen Z; Pang L; Cai W; Li T J Hazard Mater; 2021 Jul; 414():125543. PubMed ID: 33677322 [TBL] [Abstract][Full Text] [Related]
34. One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: Enhanced NH Peng C; Yan R; Peng H; Mi Y; Liang J; Liu W; Wang X; Song G; Wu P; Liu F J Hazard Mater; 2020 Mar; 385():121593. PubMed ID: 31744726 [TBL] [Abstract][Full Text] [Related]
35. Revealing the Formation and Reactivity of Cage-Confined Cu Pairs in Catalytic NO Lei H; Chen D; Yang JY; Khetan A; Jiang J; Peng B; Simon U; Ye D; Chen P Environ Sci Technol; 2023 Aug; 57(33):12465-12475. PubMed ID: 37556316 [TBL] [Abstract][Full Text] [Related]
36. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems. Lezcano-Gonzalez I; Deka U; Arstad B; Van Yperen-De Deyne A; Hemelsoet K; Waroquier M; Van Speybroeck V; Weckhuysen BM; Beale AM Phys Chem Chem Phys; 2014 Jan; 16(4):1639-50. PubMed ID: 24322601 [TBL] [Abstract][Full Text] [Related]
37. Cu-CHA - a model system for applied selective redox catalysis. Borfecchia E; Beato P; Svelle S; Olsbye U; Lamberti C; Bordiga S Chem Soc Rev; 2018 Nov; 47(22):8097-8133. PubMed ID: 30083666 [TBL] [Abstract][Full Text] [Related]
38. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging. Su W; Li Z; Peng Y; Li J Phys Chem Chem Phys; 2015 Nov; 17(43):29142-9. PubMed ID: 26462874 [TBL] [Abstract][Full Text] [Related]
39. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia. Chen B; Xu R; Zhang R; Liu N Environ Sci Technol; 2014 Dec; 48(23):13909-16. PubMed ID: 25365767 [TBL] [Abstract][Full Text] [Related]
40. Investigating the Low Temperature Formation of Cu Negri C; Hammershøi PS; Janssens TVW; Beato P; Berlier G; Bordiga S Chemistry; 2018 Aug; 24(46):12044-12053. PubMed ID: 30019783 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]