These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Age-related differences in longitudinal structural change by spectral-domain optical coherence tomography in early experimental glaucoma. Yang H; He L; Gardiner SK; Reynaud J; Williams G; Hardin C; Strouthidis NG; Downs JC; Fortune B; Burgoyne CF Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6409-20. PubMed ID: 25190652 [TBL] [Abstract][Full Text] [Related]
6. Effect of acute intraocular pressure elevation on the monkey optic nerve head as detected by spectral domain optical coherence tomography. Strouthidis NG; Fortune B; Yang H; Sigal IA; Burgoyne CF Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9431-7. PubMed ID: 22058335 [TBL] [Abstract][Full Text] [Related]
7. In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma. Ivers KM; Sredar N; Patel NB; Rajagopalan L; Queener HM; Twa MD; Harwerth RS; Porter J PLoS One; 2015; 10(7):e0134223. PubMed ID: 26230993 [TBL] [Abstract][Full Text] [Related]
8. Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits. You JY; Park SC; Su D; Teng CC; Liebmann JM; Ritch R JAMA Ophthalmol; 2013 Mar; 131(3):314-20. PubMed ID: 23370812 [TBL] [Abstract][Full Text] [Related]
9. Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement. Wu Z; Xu G; Weinreb RN; Yu M; Leung CK Ophthalmology; 2015 Jul; 122(7):1317-29. PubMed ID: 25972259 [TBL] [Abstract][Full Text] [Related]
10. Effect of focal lamina cribrosa defect on glaucomatous visual field progression. Faridi OS; Park SC; Kabadi R; Su D; De Moraes CG; Liebmann JM; Ritch R Ophthalmology; 2014 Aug; 121(8):1524-30. PubMed ID: 24697910 [TBL] [Abstract][Full Text] [Related]
11. Analysis of deep optic nerve head structures with spectral domain and swept-source optical coherence tomography. Darwich R; Jarrar F; Syed M; Sharpe GP; Chauhan BC Br J Ophthalmol; 2024 May; 108(6):807-811. PubMed ID: 37507129 [TBL] [Abstract][Full Text] [Related]
12. Cupping in the Monkey Optic Nerve Transection Model Consists of Prelaminar Tissue Thinning in the Absence of Posterior Laminar Deformation. Ing E; Ivers KM; Yang H; Gardiner SK; Reynaud J; Cull G; Wang L; Burgoyne CF Invest Ophthalmol Vis Sci; 2016 May; 57(6):2914–2927. PubMed ID: 27168368 [TBL] [Abstract][Full Text] [Related]
13. Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. He L; Yang H; Gardiner SK; Williams G; Hardin C; Strouthidis NG; Fortune B; Burgoyne CF Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):574-86. PubMed ID: 24255047 [TBL] [Abstract][Full Text] [Related]
14. Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Park SC; De Moraes CG; Teng CC; Tello C; Liebmann JM; Ritch R Ophthalmology; 2012 Jan; 119(1):3-9. PubMed ID: 21978593 [TBL] [Abstract][Full Text] [Related]
15. Effect of spectrum bias on the diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma. Rao HL; Kumbar T; Addepalli UK; Bharti N; Senthil S; Choudhari NS; Garudadri CS Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):1058-65. PubMed ID: 22266520 [TBL] [Abstract][Full Text] [Related]
16. Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma. Fortune B; Hardin C; Reynaud J; Cull G; Yang H; Wang L; Burgoyne CF Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT404-12. PubMed ID: 27409499 [TBL] [Abstract][Full Text] [Related]
17. In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma. Ivers KM; Yang H; Gardiner SK; Qin L; Reyes L; Fortune B; Burgoyne CF Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT388-403. PubMed ID: 27409498 [TBL] [Abstract][Full Text] [Related]
18. Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques. Girard MJ; Tun TA; Husain R; Acharyya S; Haaland BA; Wei X; Mari JM; Perera SA; Baskaran M; Aung T; Strouthidis NG Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):865-74. PubMed ID: 25593025 [TBL] [Abstract][Full Text] [Related]
19. Detection of optic nerve head neural canal opening within histomorphometric and spectral domain optical coherence tomography data sets. Strouthidis NG; Yang H; Fortune B; Downs JC; Burgoyne CF Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):214-23. PubMed ID: 18689697 [TBL] [Abstract][Full Text] [Related]
20. Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography. Yoshikawa M; Akagi T; Hangai M; Ohashi-Ikeda H; Takayama K; Morooka S; Kimura Y; Nakano N; Yoshimura N Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):477-84. PubMed ID: 24398100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]