These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22159583)

  • 1. Light-dependent phosphorylation of the carboxy tail of mouse melanopsin.
    Blasic JR; Lane Brown R; Robinson PR
    Cell Mol Life Sci; 2012 May; 69(9):1551-62. PubMed ID: 22159583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melanopsin Carboxy-terminus phosphorylation plasticity and bulk negative charge, not strict site specificity, achieves phototransduction deactivation.
    Valdez-Lopez JC; Gulati S; Ortiz EA; Palczewski K; Robinson PR
    PLoS One; 2020; 15(4):e0228121. PubMed ID: 32236094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G-Protein Coupled Receptor Kinase 2 Minimally Regulates Melanopsin Activity in Intrinsically Photosensitive Retinal Ganglion Cells.
    Sexton TJ; Van Gelder RN
    PLoS One; 2015; 10(6):e0128690. PubMed ID: 26069965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of mouse melanopsin by protein kinase A.
    Blasic JR; Brown RL; Robinson PR
    PLoS One; 2012; 7(9):e45387. PubMed ID: 23049792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Phosphatase 2A and Clathrin-Mediated Endocytosis Facilitate Robust Melanopsin Light Responses and Resensitization.
    Valdez-Lopez JC; Gebreegziabher M; Bailey RJ; Flores J; Awotunde O; Burnett T; Robinson PR
    Invest Ophthalmol Vis Sci; 2020 Oct; 61(12):10. PubMed ID: 33049058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C-Terminus and Third Cytoplasmic Loop Cooperatively Activate Mouse Melanopsin Phototransduction.
    Valdez-Lopez JC; Petr ST; Donohue MP; Bailey RJ; Gebreeziabher M; Cameron EG; Wolf JB; Szalai VA; Robinson PR
    Biophys J; 2020 Jul; 119(2):389-401. PubMed ID: 32621866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-Arrestin-dependent deactivation of mouse melanopsin.
    Cameron EG; Robinson PR
    PLoS One; 2014; 9(11):e113138. PubMed ID: 25401926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.
    Somasundaram P; Wyrick GR; Fernandez DC; Ghahari A; Pinhal CM; Simmonds Richardson M; Rupp AC; Cui L; Wu Z; Brown RL; Badea TC; Hattar S; Robinson PR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2741-2746. PubMed ID: 28223508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of rat melanopsin at Ser-381 and Ser-398 by light/dark and its importance for intrinsically photosensitive ganglion cells (ipRGCs) cellular Ca2+ signaling.
    Fahrenkrug J; Falktoft B; Georg B; Hannibal J; Kristiansen SB; Klausen TK
    J Biol Chem; 2014 Dec; 289(51):35482-93. PubMed ID: 25378407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanopsin Contributions to the Representation of Images in the Early Visual System.
    Allen AE; Storchi R; Martial FP; Bedford RA; Lucas RJ
    Curr Biol; 2017 Jun; 27(11):1623-1632.e4. PubMed ID: 28528909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina.
    Zhu X; Brown B; Li A; Mears AJ; Swaroop A; Craft CM
    J Neurosci; 2003 Jul; 23(14):6152-60. PubMed ID: 12853434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using siRNA to define functional interactions between melanopsin and multiple G Protein partners.
    Hughes S; Jagannath A; Hickey D; Gatti S; Wood M; Peirson SN; Foster RG; Hankins MW
    Cell Mol Life Sci; 2015 Jan; 72(1):165-79. PubMed ID: 24958088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melanopsin--shedding light on the elusive circadian photopigment.
    Brown RL; Robinson PR
    Chronobiol Int; 2004 Mar; 21(2):189-204. PubMed ID: 15332341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
    Prigge CL; Yeh PT; Liou NF; Lee CC; You SF; Liu LL; McNeill DS; Chew KS; Hattar S; Chen SK; Zhang DQ
    J Neurosci; 2016 Jul; 36(27):7184-97. PubMed ID: 27383593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanopsin phototransduction: slowly emerging from the dark.
    Hughes S; Hankins MW; Foster RG; Peirson SN
    Prog Brain Res; 2012; 199():19-40. PubMed ID: 22877657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melanopsin triggers the release of internal calcium stores in response to light.
    Kumbalasiri T; Rollag MD; Isoldi MC; Castrucci AM; Provencio I
    Photochem Photobiol; 2007; 83(2):273-9. PubMed ID: 16961436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses.
    Hatori M; Le H; Vollmers C; Keding SR; Tanaka N; Buch T; Waisman A; Schmedt C; Jegla T; Panda S
    PLoS One; 2008 Jun; 3(6):e2451. PubMed ID: 18545654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms.
    Göz D; Studholme K; Lappi DA; Rollag MD; Provencio I; Morin LP
    PLoS One; 2008 Sep; 3(9):e3153. PubMed ID: 18773079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of critical phosphorylation sites on the carboxy tail of melanopsin.
    Blasic JR; Matos-Cruz V; Ujla D; Cameron EG; Hattar S; Halpern ME; Robinson PR
    Biochemistry; 2014 Apr; 53(16):2644-9. PubMed ID: 24678795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development.
    Schmidt TM; Taniguchi K; Kofuji P
    J Neurophysiol; 2008 Jul; 100(1):371-84. PubMed ID: 18480363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.