These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 22159599)
1. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes. Held JM; Gibson BW Mol Cell Proteomics; 2012 Apr; 11(4):R111.013037. PubMed ID: 22159599 [TBL] [Abstract][Full Text] [Related]
3. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Gu L; Robinson RA Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938 [TBL] [Abstract][Full Text] [Related]
4. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method. Liu P; Zhang H; Wang H; Xia Y Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095 [TBL] [Abstract][Full Text] [Related]
5. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation. Shi Y; Carroll KS Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209 [TBL] [Abstract][Full Text] [Related]
6. Redox proteomics: from bench to bedside. Ckless K Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188 [TBL] [Abstract][Full Text] [Related]
7. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age. Stanhope SC; Brandwine-Shemmer T; Blum HR; Doud EH; Jannasch A; Mosley AL; Minke B; Weake VM Redox Biol; 2023 Jul; 63():102723. PubMed ID: 37146512 [TBL] [Abstract][Full Text] [Related]
8. Chemical Probes for Redox Signaling and Oxidative Stress. Abo M; Weerapana E Antioxid Redox Signal; 2019 Apr; 30(10):1369-1386. PubMed ID: 29132214 [TBL] [Abstract][Full Text] [Related]
9. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Duan J; Gaffrey MJ; Qian WJ Mol Biosyst; 2017 May; 13(5):816-829. PubMed ID: 28357434 [TBL] [Abstract][Full Text] [Related]
10. Proteomic approaches to the characterization of protein thiol modification. Chouchani ET; James AM; Fearnley IM; Lilley KS; Murphy MP Curr Opin Chem Biol; 2011 Feb; 15(1):120-8. PubMed ID: 21130020 [TBL] [Abstract][Full Text] [Related]
11. Cysteine-mediated redox signalling in the mitochondria. Bak DW; Weerapana E Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845 [TBL] [Abstract][Full Text] [Related]
12. Characterization of cellular oxidative stress response by stoichiometric redox proteomics. Zhang T; Gaffrey MJ; Li X; Qian WJ Am J Physiol Cell Physiol; 2021 Feb; 320(2):C182-C194. PubMed ID: 33264075 [TBL] [Abstract][Full Text] [Related]