BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22159661)

  • 1. Directed evolution of a highly active Yersinia mollaretii phytase.
    Shivange AV; Serwe A; Dennig A; Roccatano D; Haefner S; Schwaneberg U
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):405-18. PubMed ID: 22159661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution of an acid Yersinia mollaretii phytase for broadened activity at neutral pH.
    Körfer G; Novoa C; Kern J; Balla E; Grütering C; Davari MD; Martinez R; Vojcic L; Schwaneberg U
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9607-9620. PubMed ID: 30141080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution.
    Shivange AV; Roccatano D; Schwaneberg U
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):227-42. PubMed ID: 26403922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase.
    Shivange AV; Dennig A; Schwaneberg U
    J Biotechnol; 2014 Jan; 170():68-72. PubMed ID: 24315971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution.
    Shivange AV; Hoeffken HW; Haefner S; Schwaneberg U
    Biotechniques; 2016 Dec; 61(6):305-314. PubMed ID: 27938322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions.
    Huang H; Luo H; Wang Y; Fu D; Shao N; Wang G; Yang P; Yao B
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):417-26. PubMed ID: 18548246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution.
    Fu D; Huang H; Meng K; Wang Y; Luo H; Yang P; Yuan T; Yao B
    Biotechnol Bioeng; 2009 Aug; 103(5):857-64. PubMed ID: 19378262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.
    Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R
    Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement.
    Garrett JB; Kretz KA; O'Donoghue E; Kerovuo J; Kim W; Barton NR; Hazlewood GP; Short JM; Robertson DE; Gray KA
    Appl Environ Microbiol; 2004 May; 70(5):3041-6. PubMed ID: 15128565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR.
    Kim MS; Lei XG
    Appl Microbiol Biotechnol; 2008 May; 79(1):69-75. PubMed ID: 18340444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states.
    Ha NC; Oh BC; Shin S; Kim HJ; Oh TK; Kim YO; Choi KY; Oh BH
    Nat Struct Biol; 2000 Feb; 7(2):147-53. PubMed ID: 10655618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening, cloning and overexpression of Aspergillus niger phytase (phyA) in Pichia pastoris with favourable characteristics.
    Zhao DM; Wang M; Mu XJ; Sun ML; Wang XY
    Lett Appl Microbiol; 2007 Nov; 45(5):522-8. PubMed ID: 17958557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational dynamics of active site loop in Escherichia coli phytase.
    Shivange AV; Schwaneberg U; Roccatano D
    Biopolymers; 2010 Nov; 93(11):994-1002. PubMed ID: 20574969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure.
    Tomschy A; Tessier M; Wyss M; Brugger R; Broger C; Schnoebelen L; van Loon AP; Pasamontes L
    Protein Sci; 2000 Jul; 9(7):1304-11. PubMed ID: 10933495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis.
    Hesampour A; Siadat SE; Malboobi MA; Mohandesi N; Arab SS; Ghahremanpour MM
    Appl Biochem Biotechnol; 2015 Mar; 175(5):2528-41. PubMed ID: 25527139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris.
    Promdonkoy P; Tang K; Sornlake W; Harnpicharnchai P; Kobayashi RS; Ruanglek V; Upathanpreecha T; Vesaratchavest M; Eurwilaichitr L; Tanapongpipat S
    FEMS Microbiol Lett; 2009 Jan; 290(1):18-24. PubMed ID: 19025560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.
    Xu W; Shao R; Wang Z; Yan X
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3184-94. PubMed ID: 25613522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis improves the thermostability and catalytic efficiency of Aspergillus niger N25 phytase mutated by I44E and T252R.
    Liao Y; Li CM; Chen H; Wu Q; Shan Z; Han XY
    Appl Biochem Biotechnol; 2013 Oct; 171(4):900-15. PubMed ID: 23907680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cumulative improvements of thermostability and pH-activity profile of Aspergillus niger PhyA phytase by site-directed mutagenesis.
    Zhang W; Lei XG
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1033-40. PubMed ID: 17968540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel phytase with preferable characteristics from Yersinia intermedia.
    Huang H; Luo H; Yang P; Meng K; Wang Y; Yuan T; Bai Y; Yao B
    Biochem Biophys Res Commun; 2006 Dec; 350(4):884-9. PubMed ID: 17034758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.