BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22159736)

  • 1. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization.
    Lu J; Tang J; Liu Y; Zhu X; Zhang T; Zhang X
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2455-62. PubMed ID: 22159736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease.
    Flores N; Leal L; Sigala JC; de Anda R; Escalante A; Martínez A; Ramírez OT; Gosset G; Bolivar F
    J Mol Microbiol Biotechnol; 2007; 13(1-3):105-16. PubMed ID: 17693718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruiting alternative glucose utilization pathways for improving succinate production.
    Tang J; Zhu X; Lu J; Liu P; Xu H; Tan Z; Zhang X
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2513-20. PubMed ID: 22895848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions.
    Wang Q; Wu C; Chen T; Chen X; Zhao X
    Biotechnol Lett; 2006 Jan; 28(2):89-93. PubMed ID: 16369691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products.
    Hernández-Montalvo V; Martínez A; Hernández-Chavez G; Bolivar F; Valle F; Gosset G
    Biotechnol Bioeng; 2003 Sep; 83(6):687-94. PubMed ID: 12889033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Reconstruction of Regulatory Parts for Fast-frowing
    Wu F; Chen W; Peng Y; Tu R; Lin Y; Xing J; Wang Q
    ACS Synth Biol; 2020 Sep; 9(9):2399-2409. PubMed ID: 32786358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repression of galP, the galactose transporter in Escherichia coli, requires the specific regulator of N-acetylglucosamine metabolism.
    El Qaidi S; Allemand F; Oberto J; Plumbridge J
    Mol Microbiol; 2009 Jan; 71(1):146-57. PubMed ID: 19007420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered glucose transport and shikimate pathway product yields in E. coli.
    Yi J; Draths KM; Li K; Frost JW
    Biotechnol Prog; 2003; 19(5):1450-9. PubMed ID: 14524706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Recombinant Escherichia coli strains deficient in mixed acid fermentation pathways and capable of rapid aerobic growth on glucose with a reduced Crabtree effect].
    Morzhakova AA; Skorokhodova AIu; Gulevich AIu; Debabov VG
    Prikl Biokhim Mikrobiol; 2013; 49(2):136-43. PubMed ID: 23795471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome engineering Escherichia coli for L-DOPA overproduction from glucose.
    Wei T; Cheng BY; Liu JZ
    Sci Rep; 2016 Jul; 6():30080. PubMed ID: 27417146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli.
    Zhang X; Jantama K; Moore JC; Jarboe LR; Shanmugam KT; Ingram LO
    Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20180-5. PubMed ID: 19918073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathway Engineering for Phenethylamine Production in
    Xu D; Zhang L
    J Agric Food Chem; 2020 May; 68(21):5917-5926. PubMed ID: 32367713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli.
    Báez-Viveros JL; Osuna J; Hernández-Chávez G; Soberón X; Bolívar F; Gosset G
    Biotechnol Bioeng; 2004 Aug; 87(4):516-24. PubMed ID: 15286989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic engineering of Escherichia coli to improve L-phenylalanine production.
    Liu Y; Xu Y; Ding D; Wen J; Zhu B; Zhang D
    BMC Biotechnol; 2018 Jan; 18(1):5. PubMed ID: 29382315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production.
    Chen Y; Liu Y; Ding D; Cong L; Zhang D
    J Ind Microbiol Biotechnol; 2018 May; 45(5):357-367. PubMed ID: 29460214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of glucokinase from Escherichia coli K-12.
    Meyer D; Schneider-Fresenius C; Horlacher R; Peist R; Boos W
    J Bacteriol; 1997 Feb; 179(4):1298-306. PubMed ID: 9023215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of GDP-mannose using coupling fermentation of recombinant Escherichia coli.
    Honghong J; Fuping L; Yu L; Xiaoguang L; Yihan L; Hongbin W; Jing L; Yueting C
    Biotechnol Lett; 2011 Jun; 33(6):1145-50. PubMed ID: 21293904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rerouting carbon flux for optimized biosynthesis of mesaconate in Escherichia coli.
    Wang J; Wang J; Tai YS; Zhang Q; Bai W; Zhang K
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7377-7388. PubMed ID: 29926142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system.
    Flores N; Flores S; Escalante A; de Anda R; Leal L; Malpica R; Georgellis D; Gosset G; Bolívar F
    Metab Eng; 2005 Mar; 7(2):70-87. PubMed ID: 15781417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.