These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 22159753)

  • 1. Unimolecular and bimolecular binding system for the prediction of CYP2D6-mediated metabolism.
    Sato K; Yamazoe Y
    Drug Metab Dispos; 2012 Mar; 40(3):486-96. PubMed ID: 22159753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based site of metabolism prediction for cytochrome P450 2D6.
    Moors SL; Vos AM; Cummings MD; Van Vlijmen H; Ceulemans A
    J Med Chem; 2011 Sep; 54(17):6098-105. PubMed ID: 21797232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of phenylalanine 483 in cytochrome P450 2D6 is strongly substrate dependent.
    Lussenburg BM; Keizers PH; de Graaf C; Hidestrand M; Ingelman-Sundberg M; Vermeulen NP; Commandeur JN
    Biochem Pharmacol; 2005 Oct; 70(8):1253-61. PubMed ID: 16135359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a CYP2E1-template system for prediction of the metabolism on both site and preference order.
    Yamazoe Y; Ito K; Yoshinari K
    Drug Metab Rev; 2011 Nov; 43(4):409-39. PubMed ID: 22017508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 1. Focusing on polycyclic arenes and the related chemicals.
    Yamazoe Y; Ito K; Yamamura Y; Iwama R; Yoshinari K
    Drug Metab Pharmacokinet; 2016 Oct; 31(5):363-384. PubMed ID: 27665699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of CYP2D6 substrate interactions by computational methods.
    Ito Y; Kondo H; Goldfarb PS; Lewis DF
    J Mol Graph Model; 2008 Feb; 26(6):947-56. PubMed ID: 17764997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme.
    Wang B; Yang LP; Zhang XZ; Huang SQ; Bartlam M; Zhou SF
    Drug Metab Rev; 2009; 41(4):573-643. PubMed ID: 19645588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a homology model of cytochrome P450 2D6 to predict substrate site of metabolism.
    Unwalla RJ; Cross JB; Salaniwal S; Shilling AD; Leung L; Kao J; Humblet C
    J Comput Aided Mol Des; 2010 Mar; 24(3):237-56. PubMed ID: 20361239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of two-dimensional template system for the prediction of CYP2B6-mediated reaction sites.
    Koyama N; Yamazoe Y
    Drug Metab Pharmacokinet; 2011; 26(4):309-30. PubMed ID: 21403419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing small-molecule binding to cytochrome P450 2D6 and 2C9: An in silico protocol for generating toxicity alerts.
    Rossato G; Ernst B; Smiesko M; Spreafico M; Vedani A
    ChemMedChem; 2010 Dec; 5(12):2088-101. PubMed ID: 21038340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putative active site template model for cytochrome P4502C9 (tolbutamide hydroxylase).
    Jones BC; Hawksworth G; Horne VA; Newlands A; Morsman J; Tute MS; Smith DA
    Drug Metab Dispos; 1996 Feb; 24(2):260-6. PubMed ID: 8742240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of model of cytochrome P450 2D6: an in silico tool for predicting metabolism and inhibition.
    Kemp CA; Flanagan JU; van Eldik AJ; Maréchal JD; Wolf CR; Roberts GC; Paine MJ; Sutcliffe MJ
    J Med Chem; 2004 Oct; 47(22):5340-6. PubMed ID: 15481972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel approach to predicting P450-mediated drug metabolism: development of a combined protein and pharmacophore model for CYP2D6.
    de Groot MJ; Ackland MJ; Horne VA; Alex AA; Jones BC
    J Med Chem; 1999 May; 42(9):1515-24. PubMed ID: 10229622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications.
    Ford KA; Ryslik G; Sodhi J; Halladay J; Diaz D; Dambach D; Masuda M
    Drug Metab Rev; 2015 Aug; 47(3):291-319. PubMed ID: 26024250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of incorporating the 2C5 crystal structure into comparative models of cytochrome P450 2D6.
    Kirton SB; Kemp CA; Tomkinson NP; St-Gallay S; Sutcliffe MJ
    Proteins; 2002 Nov; 49(2):216-31. PubMed ID: 12211002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel binding mode of the acidic CYP2D6 substrates pactimibe and its metabolite R-125528.
    Kotsuma M; Hanzawa H; Iwata Y; Takahashi K; Tokui T
    Drug Metab Dispos; 2008 Sep; 36(9):1938-43. PubMed ID: 18524873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of N-substituted 7-methoxy-4-(aminomethyl) -coumarins by cytochrome P450 2D6 mutants and the indication of additional substrate interaction points.
    Keizers PH; Van Dijk BR; De Graaf C; Van Vugt-Lussenburg BM; Vermeulen NP; Commandeur JN
    Xenobiotica; 2006 Sep; 36(9):763-71. PubMed ID: 16971342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a polymeric binding mimic for cytochrome CYP2D6.
    Rathbone DL; Ali A; Antonaki P; Cheek S
    Biosens Bioelectron; 2005 May; 20(11):2353-63. PubMed ID: 15797339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding CYP2D6 interactions.
    de Groot MJ; Wakenhut F; Whitlock G; Hyland R
    Drug Discov Today; 2009 Oct; 14(19-20):964-72. PubMed ID: 19638317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing QSAR models for predicting ligand binding to the drug-metabolizing cytochrome P450 isoenzyme CYP2D6.
    Saraceno M; Massarelli I; Imbriani M; James TL; Bianucci AM
    Chem Biol Drug Des; 2011 Aug; 78(2):236-51. PubMed ID: 21575140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.